File size: 2,647 Bytes
5d11cf8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: mit
base_model: ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: best_berita_bert_model_fold_5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>]()
# best_berita_bert_model_fold_5
This model is a fine-tuned version of [ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa](https://huggingface.co/ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0859
- Accuracy: 0.9833
- Precision: 0.9834
- Recall: 0.9830
- F1: 0.9832
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.5542 | 1.0 | 601 | 0.3531 | 0.9142 | 0.9204 | 0.9129 | 0.9108 |
| 0.266 | 2.0 | 1202 | 0.1554 | 0.9625 | 0.9634 | 0.9620 | 0.9618 |
| 0.1215 | 3.0 | 1803 | 0.0859 | 0.9833 | 0.9834 | 0.9830 | 0.9832 |
| 0.0721 | 4.0 | 2404 | 0.1634 | 0.9725 | 0.9736 | 0.9721 | 0.9720 |
| 0.0227 | 5.0 | 3005 | 0.4132 | 0.9484 | 0.9527 | 0.9475 | 0.9470 |
| 0.0242 | 6.0 | 3606 | 0.2816 | 0.9609 | 0.9632 | 0.9602 | 0.9599 |
| 0.0083 | 7.0 | 4207 | 0.2295 | 0.9717 | 0.9731 | 0.9712 | 0.9712 |
| 0.0 | 8.0 | 4808 | 0.1644 | 0.9792 | 0.9800 | 0.9788 | 0.9789 |
| 0.0002 | 9.0 | 5409 | 0.1868 | 0.9784 | 0.9792 | 0.9780 | 0.9781 |
| 0.0 | 10.0 | 6010 | 0.1901 | 0.9784 | 0.9792 | 0.9780 | 0.9781 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1
|