File size: 3,072 Bytes
9a7066d 6c8a9b5 1287863 9a7066d 20a25be 6c8a9b5 1287863 9a7066d 1287863 6c8a9b5 1287863 6c8a9b5 9a7066d c61c680 9a7066d c61c680 9a7066d c61c680 9a7066d c61c680 9a7066d a57098a 9a7066d c61c680 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
---
language:
- te
license: apache-2.0
tags:
- automatic-speech-recognition
- openslr_SLR66
- generated_from_trainer
- robust-speech-event
- hf-asr-leaderboard
datasets:
- openslr
- SLR66
metrics:
- wer
model-index:
- name: xls-r-300m-te
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
type: openslr
name: Open SLR
args: SLR66
metrics:
- type: wer
value: 24.695121951219512
name: Test WER
- type: cer
value: 4.861934182322532
name: Test CER
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the OPENSLR_SLR66 - NA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2680
- Wer: 0.3467
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 10.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 3.0304 | 4.81 | 500 | 1.5676 | 1.0554 |
| 1.5263 | 9.61 | 1000 | 0.4693 | 0.8023 |
| 1.5299 | 14.42 | 1500 | 0.4368 | 0.7311 |
| 1.5063 | 19.23 | 2000 | 0.4360 | 0.7302 |
| 1.455 | 24.04 | 2500 | 0.4213 | 0.6692 |
| 1.4755 | 28.84 | 3000 | 0.4329 | 0.5943 |
| 1.352 | 33.65 | 3500 | 0.4074 | 0.5765 |
| 1.3122 | 38.46 | 4000 | 0.3866 | 0.5630 |
| 1.2799 | 43.27 | 4500 | 0.3860 | 0.5480 |
| 1.212 | 48.08 | 5000 | 0.3590 | 0.5317 |
| 1.1645 | 52.88 | 5500 | 0.3283 | 0.4757 |
| 1.0854 | 57.69 | 6000 | 0.3162 | 0.4687 |
| 1.0292 | 62.5 | 6500 | 0.3126 | 0.4416 |
| 0.9607 | 67.31 | 7000 | 0.2990 | 0.4066 |
| 0.9156 | 72.12 | 7500 | 0.2870 | 0.4009 |
| 0.8329 | 76.92 | 8000 | 0.2791 | 0.3909 |
| 0.7979 | 81.73 | 8500 | 0.2770 | 0.3670 |
| 0.7144 | 86.54 | 9000 | 0.2841 | 0.3661 |
| 0.6997 | 91.35 | 9500 | 0.2721 | 0.3485 |
| 0.6568 | 96.15 | 10000 | 0.2681 | 0.3437 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|