File size: 2,052 Bytes
29b3287 3a09d03 29b3287 3a09d03 9de4a4e 29b3287 9de4a4e 29b3287 9de4a4e 29b3287 3a09d03 29b3287 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
tags:
- automatic-speech-recognition
- openslr_SLR66
- robust-speech-event
- generated_from_trainer
model-index:
- name: ''
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the OPENSLR_SLR66 - NA dataset.
It achieves the following results on the evaluation set:
- Loss: 3.3845
- Wer: 0.9869
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 16
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.5131 | 9.61 | 500 | 3.5294 | 1.0 |
| 2.8596 | 19.23 | 1000 | 3.5708 | 1.0 |
| 1.9055 | 28.84 | 1500 | 3.6433 | 1.0007 |
| 1.4239 | 38.46 | 2000 | 3.6569 | 0.9995 |
| 1.2168 | 48.08 | 2500 | 3.6079 | 0.9957 |
| 1.1063 | 57.69 | 3000 | 3.5738 | 0.9925 |
| 1.0404 | 67.31 | 3500 | 3.4857 | 0.9889 |
| 1.001 | 76.92 | 4000 | 3.4882 | 0.9858 |
| 0.982 | 86.54 | 4500 | 3.3851 | 0.9871 |
| 0.9612 | 96.15 | 5000 | 3.3869 | 0.9873 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|