File size: 7,462 Bytes
d4d901b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
## Quick start
Instructions for funtion calling: 

```python

import json

import re

from typing import Optional



from jinja2 import Template

import torch 

from transformers import AutoModelForCausalLM, AutoTokenizer

from transformers.utils import get_json_schema





system_prompt = Template("""You are an expert in composing functions. You are given a question and a set of possible functions. 

Based on the question, you will need to make one or more function/tool calls to achieve the purpose. 

If none of the functions can be used, point it out and refuse to answer. 

If the given question lacks the parameters required by the function, also point it out.



You have access to the following tools:

<tools>{{ tools }}</tools>



The output MUST strictly adhere to the following format, and NO other text MUST be included.

The example format is as follows. Please make sure the parameter type is correct. If no function call is needed, please make the tool calls an empty list '[]'.

<tool_call>[

{"name": "func_name1", "arguments": {"argument1": "value1", "argument2": "value2"}},

... (more tool calls as required)

]</tool_call>""")





def prepare_messages(

    query: str,

    tools: Optional[dict[str, any]] = None,

    history: Optional[list[dict[str, str]]] = None

) -> list[dict[str, str]]:

    """Prepare the system and user messages for the given query and tools.

    

    Args:

        query: The query to be answered.

        tools: The tools available to the user. Defaults to None, in which case if a

            list without content will be passed to the model.

        history: Exchange of messages, including the system_prompt from

            the first query. Defaults to None, the first message in a conversation.

    """

    if tools is None:

        tools = []

    if history:

        messages = history.copy()

        messages.append({"role": "user", "content": query})

    else:

        messages = [

            {"role": "system", "content": system_prompt.render(tools=json.dumps(tools))},

            {"role": "user", "content": query}

        ]

    return messages





def parse_response(text: str) -> str | dict[str, any]:

    """Parses a response from the model, returning either the

    parsed list with the tool calls parsed, or the

    model thought or response if couldn't generate one.



    Args:

        text: Response from the model.

    """

    pattern = r"<tool_call>(.*?)</tool_call>"

    matches = re.findall(pattern, text, re.DOTALL)

    if matches:

        return json.loads(matches[0])

    return text



model_name_smollm = "HuggingFaceTB/SmolLM2-1.7B-Instruct"

model = AutoModelForCausalLM.from_pretrained(model_name_smollm, device_map="auto", torch_dtype="auto", trust_remote_code=True)

tokenizer = AutoTokenizer.from_pretrained(model_name_smollm)



from datetime import datetime

import random



def get_current_time() -> str:

    """Returns the current time in 24-hour format.



    Returns:

        str: Current time in HH:MM:SS format.

    """

    return datetime.now().strftime("%H:%M:%S")





def get_random_number_between(min: int, max: int) -> int:

    """

    Gets a random number between min and max.



    Args:

        min: The minimum number.

        max: The maximum number.



    Returns:

        A random number between min and max.

    """

    return random.randint(min, max)





tools = [get_json_schema(get_random_number_between), get_json_schema(get_current_time)]



toolbox = {"get_random_number_between": get_random_number_between, "get_current_time": get_current_time}



query = "Give me a number between 1 and 300"



messages = prepare_messages(query, tools=tools)



inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)

outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)

result = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)



tool_calls = parse_response(result)

# [{'name': 'get_random_number_between', 'arguments': {'min': 1, 'max': 300}}



# Get tool responses

tool_responses = [toolbox.get(tc["name"])(*tc["arguments"].values()) for tc in tool_calls]

# [63]



# For the second turn, rebuild the history of messages:

history = messages.copy()

# Add the "parsed response"

history.append({"role": "assistant", "content": result})

query = "Can you give me the hour?"

history.append({"role": "user", "content": query})



inputs = tokenizer.apply_chat_template(history, add_generation_prompt=True, return_tensors="pt").to(model.device)

outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)

result = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)



tool_calls = parse_response(result)

tool_responses = [toolbox.get(tc["name"])(*tc["arguments"].values()) for tc in tool_calls]

# ['07:57:25']

```

#### Parallel function calls

Multiple calls required by the same query.

```python

query = "Can you give me the hour and a random number between 1 and 50?"



messages = prepare_messages(query, tools=tools)



inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)

outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)

result = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)



tool_calls = parse_response(result)

tool_responses = [toolbox.get(tc["name"])(*tc["arguments"].values()) for tc in tool_calls]

# ['09:24:52', 50]



query = "Can you give me a random number between 1 and 10, other between 200 and 210 and another one between 55 and 60?"



messages = prepare_messages(query, tools=tools)



inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)

outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)

result = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)



tool_calls = parse_response(result)

tool_responses = [toolbox.get(tc["name"])(*tc["arguments"].values()) for tc in tool_calls]

# [7, 202, 60]

```

#### Tools not available

```python

query = "Can you open a new page with youtube?"



messages = prepare_messages(query, tools=tools)



inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)

outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)

result = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)



tool_calls = parse_response(result)

# []



# The response will be something similar to the following:

# "The query cannot be answered with the provided tools. Please make sure the tools are correctly installed and imported. If the tools are not installed, install them using pip: 'pip install -r tools.txt'. If the tools are already installed, ensure they are correctly configured. If the tools are not correctly configured, please contact the support team. The output MUST strictly adhere to the following format, and NO other text MUST be included.\n\n<tool_call>[]</tool_call>"

```