File size: 14,099 Bytes
d4d901b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
---

library_name: transformers
license: apache-2.0
language:
- en
pipeline_tag: text-generation
tags:
- safetensors
- onnx
- transformers.js
base_model:
- HuggingFaceTB/SmolLM2-1.7B
---



# SmolLM2

![image/png](https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/y45hIMNREW7w_XpHYB_0q.png)

##  Table of Contents

1. [Model Summary](#model-summary)
2. [Evaluation](#evaluation)
3. [Examples](#examples)
4. [Limitations](#limitations)
5. [Training](#training)
6. [License](#license)
7. [Citation](#citation)

## Model Summary

SmolLM2 is a family of compact language models available in three size: 135M, 360M, and 1.7B parameters. They are capable of solving a wide range of tasks while being lightweight enough to run on-device.

The 1.7B variant demonstrates significant advances over its predecessor SmolLM1-1.7B, particularly in instruction following, knowledge, reasoning, and mathematics. It was trained on 11 trillion tokens using a diverse dataset combination: FineWeb-Edu, DCLM, The Stack, along with new mathematics and coding datasets that we curated and will release soon. We developed the instruct version through supervised fine-tuning (SFT) using a combination of public datasets and our own curated datasets. We then applied Direct Preference Optimization (DPO) using [UltraFeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized).

The instruct model additionally supports tasks such as text rewriting, summarization and function calling thanks to datasets developed by [Argilla](https://huggingface.co/argilla) such as [Synth-APIGen-v0.1](https://huggingface.co/datasets/argilla/Synth-APIGen-v0.1).
You can find the SFT dataset here: https://huggingface.co/datasets/HuggingFaceTB/smoltalk.

For more details refer to: https://github.com/huggingface/smollm. You will find pre-training, post-training, evaluation and local inference code.

### How to use

### Transformers
```bash

pip install transformers

```

```python

from transformers import AutoModelForCausalLM, AutoTokenizer

checkpoint = "HuggingFaceTB/SmolLM2-1.7B-Instruct"



device = "cuda" # for GPU usage or "cpu" for CPU usage

tokenizer = AutoTokenizer.from_pretrained(checkpoint)

# for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`

model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)



messages = [{"role": "user", "content": "What is the capital of France."}]

input_text=tokenizer.apply_chat_template(messages, tokenize=False)

inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)

outputs = model.generate(inputs, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True)

print(tokenizer.decode(outputs[0]))

```


### Chat in TRL
You can also use the TRL CLI to chat with the model from the terminal:
```bash

pip install trl

trl chat --model_name_or_path HuggingFaceTB/SmolLM2-1.7B-Instruct --device cpu

```

## Evaluation

In this section, we report the evaluation results of SmolLM2. All evaluations are zero-shot unless stated otherwise, and we use [lighteval](https://github.com/huggingface/lighteval) to run them.

## Base Pre-Trained Model

| Metric           | SmolLM2-1.7B | Llama-1B    | Qwen2.5-1.5B | SmolLM1-1.7B |
|------------------|--------------|-------------|---------------|--------------|
| HellaSwag        | **68.7**     | 61.2        | 66.4          | 62.9         |
| ARC (Average)    | **60.5**     | 49.2        | 58.5          | 59.9         |
| PIQA             | **77.6**     | 74.8        | 76.1          | 76.0         |
| MMLU-Pro (MCF)   | **19.4**     | 11.7        | 13.7          | 10.8         |
| CommonsenseQA    | **43.6**     | 41.2        | 34.1          | 38.0         |
| TriviaQA         | **36.7**     | 28.1        | 20.9          | 22.5         |
| Winogrande       | **59.4**     | 57.8        | 59.3          | 54.7         |
| OpenBookQA       | 42.2         | 38.4        | 40.0          | **42.4**     |
| GSM8K (5-shot)   | 31.0         | 7.2         | **61.3**      | 5.5          |

## Instruction Model

| Metric                       | SmolLM2-1.7B-Instruct | Llama-1B-Instruct | Qwen2.5-1.5B-Instruct | SmolLM1-1.7B-Instruct |
|:-----------------------------|:---------------------:|:-----------------:|:----------------------:|:----------------------:|
| IFEval (Average prompt/inst) | **56.7**             | 53.5             | 47.4                  | 23.1                  |
| MT-Bench                     | 6.13                | 5.48             | **6.52**              | 4.33                  |
| OpenRewrite-Eval (micro_avg RougeL) | 44.9           | 39.2             | **46.9**              | NaN                   |

| HellaSwag                    | **66.1**            | 56.1             | 60.9                  | 55.5                  |

| ARC (Average)                | **51.7**            | 41.6             | 46.2                  | 43.7                  |

| PIQA                         | **74.4**            | 72.3             | 73.2                  | 71.6                  |

| MMLU-Pro (MCF)               | 19.3               | 12.7             | **24.2**              | 11.7                  |

| BBH (3-shot)                 | 32.2               | 27.6             | **35.3**              | 25.7                  |

| GSM8K (5-shot)               | **48.2**           | 26.8             | 42.8                  | 4.62                  |





## Examples

Below are some system and instruct prompts that work well for special tasks



### Text rewriting



```python

system_prompt_rewrite = "You are an AI writing assistant. Your task is to rewrite the user's email to make it more professional and approachable while maintaining its main points and key message. Do not return any text other than the rewritten message."

user_prompt_rewrite = "Rewrite the message below to make it more friendly and approachable while maintaining its main points and key message. Do not add any new information or return any text other than the rewritten message\nThe message:"

messages = [{"role": "system", "content": system_prompt_rewrite}, {"role": "user", "content":f"{user_prompt_rewrite} The CI is failing after your last commit!"}]

input_text=tokenizer.apply_chat_template(messages, tokenize=False)
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True)
print(tokenizer.decode(outputs[0]))
```

```
Hey there! I noticed that the CI isn't passing after your latest commit. Could you take a look and let me know what's going on? Thanks so much for your help!
```



### Summarization



```python

system_prompt_summarize = "Provide a concise, objective summary of the input text in up to three sentences, focusing on key actions and intentions without using second or third person pronouns."

messages = [{"role": "system", "content": system_prompt_summarize}, {"role": "user", "content": INSERT_LONG_EMAIL}]

input_text=tokenizer.apply_chat_template(messages, tokenize=False)

inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)

outputs = model.generate(inputs, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True)

print(tokenizer.decode(outputs[0]))

```

### Function calling

SmolLM2-1.7B-Instruct can handle function calling, it scores 27% on the [BFCL Leaderboard](https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html). Here's how you can leverage it:

```python

import json

import re

from typing import Optional



from jinja2 import Template

import torch 

from transformers import AutoModelForCausalLM, AutoTokenizer

from transformers.utils import get_json_schema





system_prompt = Template("""You are an expert in composing functions. You are given a question and a set of possible functions. 

Based on the question, you will need to make one or more function/tool calls to achieve the purpose. 

If none of the functions can be used, point it out and refuse to answer. 

If the given question lacks the parameters required by the function, also point it out.



You have access to the following tools:

<tools>{{ tools }}</tools>



The output MUST strictly adhere to the following format, and NO other text MUST be included.

The example format is as follows. Please make sure the parameter type is correct. If no function call is needed, please make the tool calls an empty list '[]'.

<tool_call>[

{"name": "func_name1", "arguments": {"argument1": "value1", "argument2": "value2"}},

... (more tool calls as required)

]</tool_call>""")





def prepare_messages(

    query: str,

    tools: Optional[dict[str, any]] = None,

    history: Optional[list[dict[str, str]]] = None

) -> list[dict[str, str]]:

    """Prepare the system and user messages for the given query and tools.

    

    Args:

        query: The query to be answered.

        tools: The tools available to the user. Defaults to None, in which case if a

            list without content will be passed to the model.

        history: Exchange of messages, including the system_prompt from

            the first query. Defaults to None, the first message in a conversation.

    """

    if tools is None:

        tools = []

    if history:

        messages = history.copy()

        messages.append({"role": "user", "content": query})

    else:

        messages = [

            {"role": "system", "content": system_prompt.render(tools=json.dumps(tools))},

            {"role": "user", "content": query}

        ]

    return messages





def parse_response(text: str) -> str | dict[str, any]:

    """Parses a response from the model, returning either the

    parsed list with the tool calls parsed, or the

    model thought or response if couldn't generate one.



    Args:

        text: Response from the model.

    """

    pattern = r"<tool_call>(.*?)</tool_call>"

    matches = re.findall(pattern, text, re.DOTALL)

    if matches:

        return json.loads(matches[0])

    return text





model_name_smollm = "HuggingFaceTB/SmolLM2-1.7B-Instruct"

model = AutoModelForCausalLM.from_pretrained(model_name_smollm, device_map="auto", torch_dtype="auto", trust_remote_code=True)

tokenizer = AutoTokenizer.from_pretrained(model_name_smollm)



from datetime import datetime

import random



def get_current_time() -> str:

    """Returns the current time in 24-hour format.



    Returns:

        str: Current time in HH:MM:SS format.

    """

    return datetime.now().strftime("%H:%M:%S")





def get_random_number_between(min: int, max: int) -> int:

    """

    Gets a random number between min and max.



    Args:

        min: The minimum number.

        max: The maximum number.



    Returns:

        A random number between min and max.

    """

    return random.randint(min, max)





tools = [get_json_schema(get_random_number_between), get_json_schema(get_current_time)]



toolbox = {"get_random_number_between": get_random_number_between, "get_current_time": get_current_time}



query = "Give me a number between 1 and 300"



messages = prepare_messages(query, tools=tools)



inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)

outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)

result = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)



tool_calls = parse_response(result)

# [{'name': 'get_random_number_between', 'arguments': {'min': 1, 'max': 300}}



# Get tool responses

tool_responses = [toolbox.get(tc["name"])(*tc["arguments"].values()) for tc in tool_calls]

# [63]



# For the second turn, rebuild the history of messages:

history = messages.copy()

# Add the "parsed response"

history.append({"role": "assistant", "content": result})

query = "Can you give me the hour?"

history.append({"role": "user", "content": query})



inputs = tokenizer.apply_chat_template(history, add_generation_prompt=True, return_tensors="pt").to(model.device)

outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)

result = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)



tool_calls = parse_response(result)

tool_responses = [toolbox.get(tc["name"])(*tc["arguments"].values()) for tc in tool_calls]

# ['07:57:25']

```
More details such as parallel function calls and tools not available can be found [here](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct/blob/main/instructions_function_calling.md)

## Limitations

SmolLM2 models primarily understand and generate content in English. They can produce text on a variety of topics, but the generated content may not always be factually accurate, logically consistent, or free from biases present in the training data. These models should be used as assistive tools rather than definitive sources of information. Users should always verify important information and critically evaluate any generated content.

## Training

### Model

- **Architecture:** Transformer decoder
- **Pretraining tokens:** 11T
- **Precision:** bfloat16

### Hardware

- **GPUs:** 256 H100

### Software

- **Training Framework:** [nanotron](https://github.com/huggingface/nanotron/tree/main)
- **Alignment Handbook** [alignment-handbook](https://github.com/huggingface/alignment-handbook/)

## License

[Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)

## Citation
```bash

@misc{allal2024SmolLM2,

      title={SmolLM2 - with great data, comes great performance}, 

      author={Loubna Ben Allal and Anton Lozhkov and Elie Bakouch and Gabriel Martín Blázquez and Lewis Tunstall and Agustín Piqueres and Andres Marafioti and Cyril Zakka and Leandro von Werra and Thomas Wolf},

      year={2024},

}

```