File size: 11,025 Bytes
4cac25e a6e9308 4cac25e c4a60f3 4cac25e a6e9308 4cac25e a6e9308 4cac25e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import argparse
import json
import scipy
import numpy as np
import sklearn
import nltk
from nltk import word_tokenize
def pairwise_meteor(candidate, reference):
return nltk.translate.meteor_score.single_meteor_score(
word_tokenize(reference), word_tokenize(candidate)
)
def compute_all_pairwise_scores(src_data, tgt_data, metric):
scores = np.empty((len(src_data), len(tgt_data)))
for i, src in enumerate(src_data):
for j, tgt in enumerate(tgt_data):
scores[i][j] = metric(src, tgt)
return scores
def print_with_space(left, right, left_space=45):
print_spaces = " " * (left_space - len(left))
print(left + print_spaces + right)
class AVeriTeCEvaluator:
verdicts = [
"Supported",
"Refuted",
"Not Enough Evidence",
"Conflicting Evidence/Cherrypicking",
]
pairwise_metric = None
max_questions = 10
metric = None
averitec_reporting_levels = [0.1, 0.2, 0.25, 0.3, 0.4, 0.5]
def __init__(self, metric="meteor"):
self.metric = metric
if metric == "meteor":
self.pairwise_metric = pairwise_meteor
def evaluate_averitec_veracity_by_type(self, srcs, tgts, threshold=0.25):
types = {}
for src, tgt in zip(srcs, tgts):
score = self.compute_pairwise_evidence_score(src, tgt)
if score <= threshold:
score = 0
for t in tgt["claim_types"]:
if t not in types:
types[t] = []
types[t].append(score)
return {t: np.mean(v) for t, v in types.items()}
def evaluate_averitec_score(self, srcs, tgts):
scores = []
for src, tgt in zip(srcs, tgts):
score = self.compute_pairwise_evidence_score(src, tgt)
this_example_scores = [0.0 for _ in self.averitec_reporting_levels]
for i, level in enumerate(self.averitec_reporting_levels):
if score > level:
this_example_scores[i] = src["pred_label"] == tgt["label"]
scores.append(this_example_scores)
return np.mean(np.array(scores), axis=0)
def evaluate_veracity(self, src, tgt):
src_labels = [x["pred_label"] for x in src]
tgt_labels = [x["label"] for x in tgt]
acc = np.mean([s == t for s, t in zip(src_labels, tgt_labels)])
f1 = {
self.verdicts[i]: x
for i, x in enumerate(
sklearn.metrics.f1_score(
tgt_labels, src_labels, labels=self.verdicts, average=None
)
)
}
f1["macro"] = sklearn.metrics.f1_score(
tgt_labels, src_labels, labels=self.verdicts, average="macro"
)
f1["acc"] = acc
return f1
def evaluate_questions_only(self, srcs, tgts):
all_utils = []
for src, tgt in zip(srcs, tgts):
if "evidence" not in src:
# If there was no evidence, use the string evidence
src_questions = self.extract_full_comparison_strings(
src, is_target=False
)[: self.max_questions]
else:
src_questions = [
qa["question"] for qa in src["evidence"][: self.max_questions]
]
tgt_questions = [qa["question"] for qa in tgt["questions"]]
pairwise_scores = compute_all_pairwise_scores(
src_questions, tgt_questions, self.pairwise_metric
)
assignment = scipy.optimize.linear_sum_assignment(
pairwise_scores, maximize=True
)
assignment_utility = pairwise_scores[assignment[0], assignment[1]].sum()
# Reweight to account for unmatched target questions
reweight_term = 1 / float(len(tgt_questions))
assignment_utility *= reweight_term
all_utils.append(assignment_utility)
return np.mean(all_utils)
def get_n_best_qau(self, srcs, tgts, n=3):
all_utils = []
for src, tgt in zip(srcs, tgts):
assignment_utility = self.compute_pairwise_evidence_score(src, tgt)
all_utils.append(assignment_utility)
idxs = np.argsort(all_utils)[::-1][:n]
examples = [
(
(
srcs[i]["questions"]
if "questions" in srcs[i]
else srcs[i]["string_evidence"]
),
tgts[i]["questions"],
all_utils[i],
)
for i in idxs
]
return examples
def compute_pairwise_evidence_score(self, src, tgt):
"""Different key is used for reference_data and prediction.
For the prediction, the format is
{"evidence": [
{
"question": "What does the increased federal medical assistance percentage mean for you?",
"answer": "Appendix A: Applicability of the Increased Federal Medical Assistance Percentage ",
"url": "https://www.medicaid.gov/federal-policy-guidance/downloads/smd21003.pdf"
}],
"pred_label": "Supported"}
And for the data with fold label:
{"questions": [
{
"question": "Where was the claim first published",
"answers": [
{
"answer": "It was first published on Sccopertino",
"answer_type": "Abstractive",
"source_url": "https://web.archive.org/web/20201129141238/https://scoopertino.com/exposed-the-imac-disaster-that-almost-was/",
"source_medium": "Web text",
"cached_source_url": "https://web.archive.org/web/20201129141238/https://scoopertino.com/exposed-the-imac-disaster-that-almost-was/"
}
]
}]
"label": "Refuted"}
"""
src_strings = self.extract_full_comparison_strings(src, is_target=False)[
: self.max_questions
]
tgt_strings = self.extract_full_comparison_strings(tgt)
pairwise_scores = compute_all_pairwise_scores(
src_strings, tgt_strings, self.pairwise_metric
)
assignment = scipy.optimize.linear_sum_assignment(
pairwise_scores, maximize=True
)
assignment_utility = pairwise_scores[assignment[0], assignment[1]].sum()
# Reweight to account for unmatched target questions
reweight_term = 1 / float(len(tgt_strings))
assignment_utility *= reweight_term
return assignment_utility
def evaluate_questions_and_answers(self, srcs, tgts):
all_utils = []
for src, tgt in zip(srcs, tgts):
src_strings = self.extract_full_comparison_strings(src, is_target=False)[
: self.max_questions
]
tgt_strings = self.extract_full_comparison_strings(tgt)
pairwise_scores = compute_all_pairwise_scores(
src_strings, tgt_strings, self.pairwise_metric
)
assignment = scipy.optimize.linear_sum_assignment(
pairwise_scores, maximize=True
)
assignment_utility = pairwise_scores[assignment[0], assignment[1]].sum()
# Reweight to account for unmatched target questions
reweight_term = 1 / float(len(tgt_strings))
assignment_utility *= reweight_term
all_utils.append(assignment_utility)
return np.mean(all_utils)
def extract_full_comparison_strings(self, example, is_target=True):
example_strings = []
if is_target:
if "questions" in example:
for evidence in example["questions"]:
# If the answers is not a list, make them a list:
if not isinstance(evidence["answers"], list):
evidence["answers"] = [evidence["answers"]]
for answer in evidence["answers"]:
example_strings.append(
evidence["question"] + " " + answer["answer"]
)
if (
"answer_type" in answer
and answer["answer_type"] == "Boolean"
):
example_strings[-1] += ". " + answer["boolean_explanation"]
if len(evidence["answers"]) == 0:
example_strings.append(
evidence["question"] + " No answer could be found."
)
else:
if "evidence" in example:
for evidence in example["evidence"]:
example_strings.append(
evidence["question"] + " " + evidence["answer"]
)
if "string_evidence" in example:
for full_string_evidence in example["string_evidence"]:
example_strings.append(full_string_evidence)
return example_strings
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Evaluate the veracity prediction.")
parser.add_argument(
"-i",
"--prediction_file",
default="data_store/dev_veracity_prediction.json",
help="Json file with claim, evidence, and veracity prediction.",
)
parser.add_argument(
"--label_file",
default="data/dev.json",
help="Json file with labels.",
)
args = parser.parse_args()
with open(args.prediction_file) as f:
predictions = json.load(f)
with open(args.label_file) as f:
references = json.load(f)
scorer = AVeriTeCEvaluator()
q_score = scorer.evaluate_questions_only(predictions, references)
print_with_space("Question-only score (HU-" + scorer.metric + "):", str(q_score))
p_score = scorer.evaluate_questions_and_answers(predictions, references)
print_with_space("Question-answer score (HU-" + scorer.metric + "):", str(p_score))
print("====================")
v_score = scorer.evaluate_veracity(predictions, references)
print("Veracity F1 scores:")
for k, v in v_score.items():
print_with_space(" * " + k + ":", str(v))
print("--------------------")
print("AVeriTeC scores:")
v_score = scorer.evaluate_averitec_score(predictions, references)
for i, level in enumerate(scorer.averitec_reporting_levels):
print_with_space(
" * Veracity scores (" + scorer.metric + " @ " + str(level) + "):",
str(v_score[i]),
)
print("--------------------")
print("AVeriTeC scores by type @ 0.25:")
type_scores = scorer.evaluate_averitec_veracity_by_type(
predictions, references, threshold=0.25
)
for t, v in type_scores.items():
print_with_space(" * Veracity scores (" + t + "):", str(v))
|