File size: 4,439 Bytes
439d31d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
{
  "lang":"da",
  "name":"dacy_medium_ner_fine_grained",
  "version":"0.1.0",
  "description":"\n<a href=\"https://github.com/centre-for-humanities-computing/Dacy\"><img src=\"https://centre-for-humanities-computing.github.io/DaCy/_static/icon.png\" width=\"175\" height=\"175\" align=\"right\" /></a>\n\n# DaCy_medium_ner_fine_grained\n\nDaCy is a Danish language processing framework with state-of-the-art pipelines as well as functionality for analyzing Danish pipelines.\nAt the time of publishing this model, also included in DaCy encorporates the only models for fine-grained NER using DANSK dataset - a dataset containing 18 annotation types in the same format as Ontonotes.\nMoreover, DaCy's largest pipeline has achieved State-of-the-Art performance on Named entity recognition, part-of-speech tagging and dependency parsing for Danish on the DaNE dataset. \nCheck out the [DaCy repository](https://github.com/centre-for-humanities-computing/DaCy) for material on how to use DaCy and reproduce the results. \nDaCy also contains guides on usage of the package as well as behavioural test for biases and robustness of Danish NLP pipelines.\n    ",
  "author":"Centre for Humanities Computing Aarhus",
  "email":"Kenneth.enevoldsen@cas.au.dk",
  "url":"https://chcaa.io/#/",
  "license":"apache-2.0",
  "spacy_version":">=3.5.0,<3.6.0",
  "spacy_git_version":"Unknown",
  "vectors":{
    "width":0,
    "vectors":0,
    "keys":0,
    "name":null
  },
  "labels":{
    "transformer":[

    ],
    "ner":[
      "CARDINAL",
      "DATE",
      "EVENT",
      "FACILITY",
      "GPE",
      "LANGUAGE",
      "LAW",
      "LOCATION",
      "MONEY",
      "NORP",
      "ORDINAL",
      "ORGANIZATION",
      "PERCENT",
      "PERSON",
      "PRODUCT",
      "QUANTITY",
      "TIME",
      "WORK OF ART"
    ]
  },
  "pipeline":[
    "transformer",
    "ner"
  ],
  "components":[
    "transformer",
    "ner"
  ],
  "disabled":[

  ],
  "performance":{
    "ents_f":0.8055281343,
    "ents_p":0.7937743191,
    "ents_r":0.8176352705,
    "ents_per_type":{
      "ORGANIZATION":{
        "p":0.8376623377,
        "r":0.8657718121,
        "f":0.8514851485
      },
      "PERSON":{
        "p":0.8875739645,
        "r":0.8571428571,
        "f":0.8720930233
      },
      "NORP":{
        "p":0.8958333333,
        "r":0.8775510204,
        "f":0.8865979381
      },
      "CARDINAL":{
        "p":0.7797356828,
        "r":0.7831858407,
        "f":0.7814569536
      },
      "GPE":{
        "p":0.764957265,
        "r":0.9274611399,
        "f":0.8384074941
      },
      "DATE":{
        "p":0.8248587571,
        "r":0.8957055215,
        "f":0.8588235294
      },
      "PRODUCT":{
        "p":0.6184210526,
        "r":0.6527777778,
        "f":0.6351351351
      },
      "LOCATION":{
        "p":0.7,
        "r":0.7777777778,
        "f":0.7368421053
      },
      "FACILITY":{
        "p":0.5,
        "r":0.5714285714,
        "f":0.5333333333
      },
      "WORK OF ART":{
        "p":0.6078431373,
        "r":0.6739130435,
        "f":0.6391752577
      },
      "TIME":{
        "p":0.5,
        "r":0.6666666667,
        "f":0.5714285714
      },
      "MONEY":{
        "p":1.0,
        "r":1.0,
        "f":1.0
      },
      "PERCENT":{
        "p":0.9230769231,
        "r":1.0,
        "f":0.96
      },
      "QUANTITY":{
        "p":0.5666666667,
        "r":0.7727272727,
        "f":0.6538461538
      },
      "ORDINAL":{
        "p":0.7777777778,
        "r":0.6363636364,
        "f":0.7
      },
      "LANGUAGE":{
        "p":1.0,
        "r":0.3214285714,
        "f":0.4864864865
      },
      "LAW":{
        "p":0.7142857143,
        "r":0.5555555556,
        "f":0.625
      },
      "EVENT":{
        "p":0.5555555556,
        "r":0.5882352941,
        "f":0.5714285714
      }
    },
    "transformer_loss":172.7275591314,
    "ner_loss":820.9019488291
  },
  "requirements":[
    "spacy-transformers>=1.1.2,<1.2.0"
  ],
  "datasets":"chcaa/DANSK",
  "sources":[
    {
      "name":"DANSK - Danish Annotations for NLP Specific TasKs",
      "url":"https://huggingface.co/datasets/chcaa/DANSK",
      "license":"Creative Commons Attribution Share Alike 4.0 International",
      "author":"chcaa"
    },
    {
      "name":"vesteinn/DanskBERT",
      "author":"V\u00e9steinn Sn\u00e6bjarnarson",
      "url":"https://huggingface.co/vesteinn/DanskBERT",
      "license":"agpl-3.0"
    }
  ]
}