|
Standford Alpaca |
|
|
|
FINETUNED USING THE ORIGINAL REPOSITORY: https://github.com/tatsu-lab/stanford_alpaca |
|
NO LORA HAS BEEN USED |
|
|
|
status of training can be viewed at: https://wandb.ai/peruano/huggingface/runs/ei57qbzm |
|
|
|
SCRIPT TO CONVERT: https://gist.github.com/eous/31959971768a0b56a5fdb1c7db85c6e3 |
|
|
|
CONFIGURATION (default): |
|
|
|
```shell |
|
torchrun --nproc_per_node=4 --master_port=3045 train.py \ |
|
--model_name_or_path /workspace/llama-7b-hf \ |
|
--data_path ./alpaca_data.json \ |
|
--bf16 True \ |
|
--output_dir /workspace/output \ |
|
--num_train_epochs 3 \ |
|
--per_device_train_batch_size 4 \ |
|
--per_device_eval_batch_size 4 \ |
|
--gradient_accumulation_steps 8 \ |
|
--evaluation_strategy "no" \ |
|
--save_strategy "steps" \ |
|
--save_steps 200 \ |
|
--save_total_limit 1 \ |
|
--learning_rate 2e-5 \ |
|
--weight_decay 0. \ |
|
--warmup_ratio 0.03 \ |
|
--lr_scheduler_type "cosine" \ |
|
--logging_steps 1 \ |
|
--fsdp "full_shard auto_wrap" \ |
|
--fsdp_transformer_layer_cls_to_wrap 'LLaMADecoderLayer' \ |
|
--tf32 True --report_to="wandb" |
|
``` |