File size: 1,739 Bytes
164ef48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c381754
 
e8655ed
164ef48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: apache-2.0
base_model: Salesforce/codet5-small
tags:
- generated_from_trainer
model-index:
- name: codet5-small-v11
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# codet5-small-v11

This model is a fine-tuned version of [Salesforce/codet5-small](https://huggingface.co/Salesforce/codet5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1410
- Bleu Score: 0.0004
- Gen Len: 13.1271

## Model description

Trained:
- on: chathuranga-jayanath/formatted-selfapr-train-data
  - prompt: selfapr train data format -> [BUG]...[CONTEXT]...[CLASS]...[ERROR] <fe> <ce> 

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 30
- eval_batch_size: 30
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Bleu Score | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:----------:|:-------:|
| 0.2246        | 1.0   | 10656 | 0.1778          | 0.0004     | 13.1185 |
| 0.1915        | 2.0   | 21312 | 0.1489          | 0.0004     | 13.1311 |
| 0.1623        | 3.0   | 31968 | 0.1410          | 0.0004     | 13.1271 |


### Framework versions

- Transformers 4.38.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1