File size: 2,650 Bytes
e591243
 
 
 
 
 
 
5d97a7a
 
e591243
 
 
 
 
 
 
 
 
 
 
 
5d97a7a
 
 
e591243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d97a7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e591243
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- wer
base_model: openai/whisper-tiny
model-index:
- name: lora-whisper-tiny
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lora-whisper-tiny

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1131
- Wer: 40.8556

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 1.8796        | 2.7   | 200  | 1.8730          | 46.8159 |
| 1.5505        | 5.41  | 400  | 1.5270          | 44.5912 |
| 1.2514        | 8.11  | 600  | 1.2960          | 44.1416 |
| 1.1319        | 10.81 | 800  | 1.1753          | 42.2831 |
| 1.1388        | 13.51 | 1000 | 1.1591          | 42.4407 |
| 1.1174        | 16.22 | 1200 | 1.1487          | 43.4789 |
| 1.1255        | 18.92 | 1400 | 1.1414          | 43.0061 |
| 1.102         | 21.62 | 1600 | 1.1358          | 42.5519 |
| 1.0848        | 24.32 | 1800 | 1.1310          | 42.8949 |
| 1.0912        | 27.03 | 2000 | 1.1272          | 41.1337 |
| 1.0894        | 29.73 | 2200 | 1.1240          | 41.6667 |
| 1.0697        | 32.43 | 2400 | 1.1216          | 42.5426 |
| 1.064         | 35.14 | 2600 | 1.1193          | 42.1348 |
| 1.0752        | 37.84 | 2800 | 1.1175          | 41.7825 |
| 1.0983        | 40.54 | 3000 | 1.1161          | 41.7037 |
| 1.0948        | 43.24 | 3200 | 1.1150          | 41.0641 |
| 1.0319        | 45.95 | 3400 | 1.1142          | 40.9807 |
| 1.0394        | 48.65 | 3600 | 1.1136          | 41.4303 |
| 1.0602        | 51.35 | 3800 | 1.1132          | 40.8695 |
| 1.0139        | 54.05 | 4000 | 1.1131          | 40.8556 |


### Framework versions

- PEFT 0.10.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2