File size: 8,145 Bytes
b8bf9dd
 
 
 
 
 
 
 
 
 
 
 
 
6454725
 
 
b8bf9dd
6454725
 
b8bf9dd
 
6454725
b8bf9dd
 
 
 
 
 
 
 
 
 
 
6454725
b8bf9dd
 
 
 
 
 
 
6454725
 
 
 
b8bf9dd
 
6454725
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8bf9dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6454725
 
 
 
b8bf9dd
6454725
b8bf9dd
 
 
 
 
 
 
 
 
6454725
b8bf9dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6454725
b8bf9dd
 
 
 
 
 
 
 
 
6454725
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import pandas as pd
import numpy as np
import time
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler
from imblearn.over_sampling import SMOTE

# ===========================
#  CONFIGURATION
# ===========================

TRAIN_PATH = "data/train_dataset_full - train_dataset_full.csv"
# TRAIN_PATH = "data/train_dataset_full - train_dataset_partial_for_testing.csv"
TEST_PATH = "data/X_test_1st.csv"  # Replace with actual test dataset path

CATEGORICAL_COLUMNS = ["gender", "product",]
IDS_COLUMNS = [ "user_id", "session_id", "campaign_id", "webpage_id"]
TARGET_COLUMN = "is_click"
FEATURE_COLUMNS = [
    "age_level", "gender", "product",
    "product_category_1", "product_category_2", "user_group_id",
    "user_depth", "city_development_index", "var_1"
]

AGGREGATED_COLUMNS = [
    "click_sum_age_sex_prod", "click_count_age_sex_prod",
    "unique_campaigns_age_sex_prod", "unique_webpages_age_sex_prod",
    "click_sum_city_age_prod", "click_count_city_age_prod",
    "unique_campaigns_city_age_prod", "unique_webpages_city_age_prod"
]

TEMPORAL_COLUMNS = ["year", "month", "day", "hour", "minute", "weekday"]
# ===========================
#  LOAD DATASETS
# ===========================

def load_data(train_path=TRAIN_PATH, test_path=TEST_PATH):
    """Load train & test datasets, handling missing values."""
    train_df = pd.read_csv(train_path)
    y_train = train_df[TARGET_COLUMN]
    train_df = train_df[~y_train.isnull()]


    test_df = pd.read_csv(test_path)

    train_df["DateTime"] = pd.to_datetime(train_df["DateTime"])
    test_df["DateTime"] = pd.to_datetime(test_df["DateTime"])
    train_df["DateTime"].fillna(train_df["DateTime"].mode()[0], inplace=True)
    test_df["DateTime"].fillna(test_df["DateTime"].mode()[0], inplace=True)

    if "DateTime" in train_df.columns:
        train_df["DateTime"] = pd.to_datetime(train_df["DateTime"])
        train_df["year"] = train_df["DateTime"].dt.year
        train_df["month"] = train_df["DateTime"].dt.month
        train_df["day"] = train_df["DateTime"].dt.day
        train_df["hour"] = train_df["DateTime"].dt.hour
        train_df["minute"] = train_df["DateTime"].dt.minute
        train_df["weekday"] = train_df["DateTime"].dt.weekday
        train_df.drop("DateTime", axis=1, inplace=True)

    if "DateTime" in test_df.columns:
        test_df["DateTime"] = pd.to_datetime(test_df["DateTime"])
        test_df["year"] = test_df["DateTime"].dt.year
        test_df["month"] = test_df["DateTime"].dt.month
        test_df["day"] = test_df["DateTime"].dt.day
        test_df["hour"] = test_df["DateTime"].dt.hour
        test_df["minute"] = test_df["DateTime"].dt.minute
        test_df["weekday"] = test_df["DateTime"].dt.weekday
        test_df.drop("DateTime", axis=1, inplace=True)

    # Fill missing values
    train_df.fillna(-1, inplace=True)
    test_df.fillna(-1, inplace=True)

    return train_df, test_df


# ===========================
#  FEATURE ENGINEERING: AGGREGATIONS
# ===========================

def add_aggregated_features(df, test_df):
    """Creates aggregated features based on age, gender, and product interactions."""

    # Aggregate by age & gender vs product
    age_sex_product_agg = df.groupby(["age_level", "gender", "product"]).agg({
        "is_click": ["sum", "count"],
        "campaign_id": "nunique",
        "webpage_id": "nunique"
    }).reset_index()

    # Rename columns after aggregation
    age_sex_product_agg.columns = ["age_level", "gender", "product",
                                   "click_sum_age_sex_prod", "click_count_age_sex_prod",
                                   "unique_campaigns_age_sex_prod", "unique_webpages_age_sex_prod"]

    # Merge into train & test datasets
    df = df.merge(age_sex_product_agg, on=["age_level", "gender", "product"], how="left")
    test_df = test_df.merge(age_sex_product_agg, on=["age_level", "gender", "product"], how="left")

    # Aggregate by city, age, product
    city_age_product_agg = df.groupby(["city_development_index", "age_level", "product"]).agg({
        "is_click": ["sum", "count"],
        "campaign_id": "nunique",
        "webpage_id": "nunique"
    }).reset_index()

    # Rename columns
    city_age_product_agg.columns = ["city_development_index", "age_level", "product",
                                    "click_sum_city_age_prod", "click_count_city_age_prod",
                                    "unique_campaigns_city_age_prod", "unique_webpages_city_age_prod"]

    # Merge into train & test datasets
    df = df.merge(city_age_product_agg, on=["city_development_index", "age_level", "product"], how="left")
    test_df = test_df.merge(city_age_product_agg, on=["city_development_index", "age_level", "product"], how="left")

    # Fill missing values after merging
    df.fillna(0, inplace=True)
    test_df.fillna(0, inplace=True)

    return df, test_df


# ===========================
#  ENCODE & NORMALIZE FEATURES
# ===========================

def preprocess_data(df, test_df, categorical_columns):
    """Encodes categorical features, normalizes numerical features, and prepares the dataset."""

    label_encoders = {}
    for col in categorical_columns:
        le = LabelEncoder()
        df[col] = le.fit_transform(df[col].astype(str))
        test_df[col] = test_df[col].astype(str).map(lambda s: le.transform([s])[0] if s in le.classes_ else -1)
        label_encoders[col] = le  # Store encoders for later use

    numerical_columns = [col for col in FEATURE_COLUMNS + AGGREGATED_COLUMNS if col not in categorical_columns]

    # scaler = StandardScaler()
    # df[numerical_columns] = scaler.fit_transform(df[numerical_columns])
    # test_df[numerical_columns] = scaler.transform(test_df[numerical_columns])


    return df, test_df, label_encoders,# scaler


# ===========================
#  SPLIT DATA & HANDLE IMBALANCE
# ===========================

def split_and_balance_data(df, target_column):
    """Splits data into training and validation sets, applies SMOTE to balance classes."""

    X = df[IDS_COLUMNS + FEATURE_COLUMNS + AGGREGATED_COLUMNS + TEMPORAL_COLUMNS]
    y = df[target_column]

    # Handle class imbalance using SMOTE
    smote = SMOTE(sampling_strategy="auto", random_state=42)
    X_resampled, y_resampled = smote.fit_resample(X, y)

    # Split into training & validation sets
    X_train, X_val, y_train, y_val = train_test_split(
        X_resampled, y_resampled, test_size=0.2, random_state=42, stratify=y_resampled
    )

    return X_train, X_val, y_train, y_val


# ===========================
#  VISUALIZE FEATURES
# ===========================

def visualize_features():
    """Generates visualizations for aggregated features."""

    df, _ = load_data()
    df, _ = add_aggregated_features(df, df)

    sns.set_style("whitegrid")

    fig, axes = plt.subplots(1, 2, figsize=(14, 6))

    sns.barplot(x="age_level", y="click_sum_age_sex_prod", hue="gender",
                data=df, ax=axes[0], palette="coolwarm")
    axes[0].set_title("Total Clicks by Age & Gender vs Product")

    sns.barplot(x="city_development_index", y="click_sum_city_age_prod", hue="age_level",
                data=df, ax=axes[1], palette="viridis")
    axes[1].set_title("Total Clicks by City Development Index & Age")

    plt.tight_layout()
    plt.show()


# ===========================
#  RUN FULL DATA PROCESSING PIPELINE
# ===========================

def load_and_process_data():
    """Runs the full data processing pipeline and returns preprocessed training & test data."""

    df, test_df = load_data()
    df, test_df = add_aggregated_features(df, test_df)
    df, test_df, label_encoders = preprocess_data(df, test_df, CATEGORICAL_COLUMNS)
    X_train, X_val, y_train, y_val = split_and_balance_data(df, TARGET_COLUMN)

    return X_train, X_val, y_train, y_val, test_df


if __name__ == "__main__":
    print("🔹 Loading and processing data...")
    X_train, X_val, y_train, y_val, test_df = load_and_process_data()
    print("✅ Data successfully loaded and processed!")