File size: 2,403 Bytes
b57c6a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cf0c18
b57c6a9
 
 
2e85d09
3cf0c18
 
b57c6a9
 
 
00b08d7
 
 
 
db51581
00b08d7
b57c6a9
 
 
db51581
de3aeb2
b57c6a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eebaaf8
 
 
826ad75
 
 
 
 
00b08d7
2e85d09
8c3afad
de3aeb2
 
 
b57c6a9
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: cc-by-nc-4.0
base_model: KT-AI/midm-bitext-S-7B-inst-v1
tags:
- generated_from_trainer
model-index:
- name: lora-midm-nsmc
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lora-midm-nsmc

This model is a fine-tuned version of [KT-AI/midm-bitext-S-7B-inst-v1](https://huggingface.co/KT-AI/midm-bitext-S-7B-inst-v1) on an nsmc dataset.

## Model description

KT-midm model을 nsmc데이터λ₯Ό ν™œμš©ν•˜μ—¬ λ―Έμ„ΈνŠœλ‹ν•œ λͺ¨λΈ  
μ˜ν™” 리뷰 데이터λ₯Ό 기반으둜 μ‚¬μš©μžκ°€ μž‘μ„±ν•œ 리뷰의 긍정 λ˜λŠ” 뢀정을 νŒŒμ•…ν•œλ‹€.  


## Intended uses & limitations

### Intended uses
μ‚¬μš©μžκ°€ μž‘μ„±ν•œ 리뷰의 긍정 λ˜λŠ” λΆ€μ • 감정 뢄석을 μ œκ³΅ν•¨

### Limitaions
μ˜ν™” 리뷰에 νŠΉν™”λ˜μ–΄ 있으며, λ‹€λ₯Έ μœ ν˜•μ—λŠ” μ œν•œμ΄ μžˆμ„ 수 있음  
Colab T4 GPUμ—μ„œ ν…ŒμŠ€νŠΈ λ˜μ—ˆμŒ

## Training and evaluation data

Training data: nsmc 'train' data 쀑 μƒμœ„ 2000개의 μƒ˜ν”Œ  
Evaluation data: nsmc 'test' data 쀑 μƒμœ„ 1000개의 μƒ˜ν”Œ

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 300
- mixed_precision_training: Native AMP

### Training results


![image/png](https://cdn-uploads.huggingface.co/production/uploads/652384150f935fa8fd6c6779/jd7jtIHmniBqcYJ3tlEID.png)

TrainOutput(global_step=300, training_loss=1.1105608495076498,  
metrics={'train_runtime': 929.3252, 'train_samples_per_second': 0.646,  
'train_steps_per_second': 0.323, 'total_flos': 9315508499251200.0,  
'train_loss': 1.1105608495076498, 'epoch': 0.3})

### 정확도
Midm: 정확도 0.89  
|               | Positive Prediction(PP) | Negative Prediction(NP) |
|--------------------|---------------------|---------------------|
| True Positive (TP) | 474                 | 34                  |
| True Negative (TN) | 76                  | 416                 |

### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0