Update README.md
Browse files
README.md
CHANGED
@@ -11,12 +11,27 @@ language:
|
|
11 |
- zh
|
12 |
- ja
|
13 |
pipeline_tag: text-generation
|
14 |
-
base_model: anthracite-org/magnum-12b-
|
15 |
tags:
|
16 |
- chat
|
17 |
---
|
|
|
|
|
|
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
![image/png](https://cdn-uploads.huggingface.co/production/uploads/658a46cbfb9c2bdfae75b3a6/sWYs3iHkn36lw6FT_Y7nn.png)
|
21 |
|
22 |
v2.5 KTO is an experimental release; we are testing a hybrid reinforcement learning strategy of KTO + DPOP, using rejected data sampled from the original model as "rejected". For "chosen", we use data from the original finetuning dataset as "chosen".
|
|
|
11 |
- zh
|
12 |
- ja
|
13 |
pipeline_tag: text-generation
|
14 |
+
base_model: anthracite-org/magnum-v2.5-12b-kto
|
15 |
tags:
|
16 |
- chat
|
17 |
---
|
18 |
+
# magnum-v2.5-12b-kto-exl2
|
19 |
+
Original model: [magnum-v2.5-12b-kto](https://huggingface.co/anthracite-org/magnum-v2.5-12b-kto)
|
20 |
+
Creator: [anthracite-org](https://huggingface.co/anthracite-org)
|
21 |
|
22 |
+
## Quants
|
23 |
+
[4bpw h6 (main)](https://huggingface.co/cgus/magnum-v2.5-12b-kto-exl2/tree/main)
|
24 |
+
[4.5bpw h6](https://huggingface.co/cgus/magnum-v2.5-12b-kto-exl2/tree/4.5bpw-h6)
|
25 |
+
[5bpw h6](https://huggingface.co/cgus/magnum-v2.5-12b-kto-exl2/tree/5bpw-h6)
|
26 |
+
[6bpw h6](https://huggingface.co/cgus/magnum-v2.5-12b-kto-exl2/tree/6bpw-h6)
|
27 |
+
[8bpw h8](https://huggingface.co/cgus/magnum-v2.5-12b-kto-exl2/tree/8bpw-h8)
|
28 |
|
29 |
+
## Quantization notes
|
30 |
+
Made with exllamav2 0.2.2 with the default dataset.
|
31 |
+
These quants are for RTX cards on Windows/Linux or AMD on Linux.
|
32 |
+
Use with Text-Generation-WebUI, TabbyAPI, etc.
|
33 |
+
|
34 |
+
# Original model card
|
35 |
![image/png](https://cdn-uploads.huggingface.co/production/uploads/658a46cbfb9c2bdfae75b3a6/sWYs3iHkn36lw6FT_Y7nn.png)
|
36 |
|
37 |
v2.5 KTO is an experimental release; we are testing a hybrid reinforcement learning strategy of KTO + DPOP, using rejected data sampled from the original model as "rejected". For "chosen", we use data from the original finetuning dataset as "chosen".
|