|
--- |
|
base_model: deepseek-ai/deepseek-coder-6.7b-instruct |
|
tags: |
|
- instruct |
|
- finetune |
|
model-index: |
|
- name: NaturalQuery-6.7B-v0.1 |
|
results: [] |
|
license: other |
|
license_name: deepseek |
|
language: |
|
- en |
|
datasets: |
|
- cfahlgren1/wiki-sql-codellama-expanded |
|
- cfahlgren1/natural-sql |
|
--- |
|
|
|
# **NaturalQuery-6.7B-v0.1** |
|
|
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/648a374f00f7a3374ee64b99/hafdsfrFCqrVbATIzV_EN.png" width="600"> |
|
|
|
**NaturalQuery** is a LLM that can translate natural language queries to SQL based on your schema. It is finetuned on 8k text to PostgreSQL Natural Language <> SQL pairs. |
|
|
|
**Future Improvements**: |
|
|
|
- Much larger training set |
|
- More complex schemas, questions, and queries |
|
- Reward modeling via DPO |
|
- Benchmarking |
|
|
|
# **Usage** |
|
|
|
Make sure you have the correct version of the transformers library installed: |
|
|
|
```sh |
|
pip install transformers==4.35.2 |
|
``` |
|
|
|
### **Loading the Model** |
|
|
|
Use the following Python code to load the model: |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
tokenizer = AutoTokenizer.from_pretrained("cfahlgren1/NaturalSQL-6.7B-v0") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"cfahlgren1/NaturalSQL-6.7B-v0", |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
) |
|
``` |
|
|
|
### **Generating Text** |
|
|
|
To generate text, use the following Python code. [Here](https://gist.github.com/cfahlgren1/ba17f01cf688c4229686dc3dfb4d4549) is a full notebook with the SQL table prompt format to use. |
|
|
|
```python |
|
messages=[ |
|
{ 'role': 'user', 'content': prompt} |
|
] |
|
|
|
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device) |
|
|
|
# 32023 is the id of <|EOT|> token |
|
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=32023) |
|
|
|
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)) |
|
|
|
``` |
|
|
|
|
|
# **SQL Generation Template** |
|
|
|
``` |
|
### Task |
|
|
|
Generate a SQL query to answer the following question: `{natural language question}` |
|
|
|
### Database Schema |
|
|
|
The query will run on a database with the following schema: |
|
|
|
''' |
|
<SQL Table DDL Statements> |
|
''' |
|
|
|
### Answer |
|
Here is the SQL query that answers the question: `{natural language question}` |
|
'''sql |
|
``` |
|
|
|
# **Example SQL Output** |
|
|
|
### **Example Schemas** |
|
|
|
```sql |
|
CREATE TABLE users ( |
|
user_id SERIAL PRIMARY KEY, |
|
username VARCHAR(50) NOT NULL, |
|
email VARCHAR(100) NOT NULL, |
|
password_hash TEXT NOT NULL, |
|
created_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP |
|
); |
|
|
|
CREATE TABLE projects ( |
|
project_id SERIAL PRIMARY KEY, |
|
project_name VARCHAR(100) NOT NULL, |
|
description TEXT, |
|
start_date DATE, |
|
end_date DATE, |
|
owner_id INTEGER REFERENCES users(user_id) |
|
); |
|
|
|
CREATE TABLE tasks ( |
|
task_id SERIAL PRIMARY KEY, |
|
task_name VARCHAR(100) NOT NULL, |
|
description TEXT, |
|
due_date DATE, |
|
status VARCHAR(50), |
|
project_id INTEGER REFERENCES projects(project_id) |
|
); |
|
|
|
CREATE TABLE taskassignments ( |
|
assignment_id SERIAL PRIMARY KEY, |
|
task_id INTEGER REFERENCES tasks(task_id), |
|
user_id INTEGER REFERENCES users(user_id), |
|
assigned_date DATE NOT NULL DEFAULT CURRENT_TIMESTAMP |
|
); |
|
|
|
CREATE TABLE comments ( |
|
comment_id SERIAL PRIMARY KEY, |
|
content TEXT NOT NULL, |
|
created_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP, |
|
task_id INTEGER REFERENCES tasks(task_id), |
|
user_id INTEGER REFERENCES users(user_id) |
|
); |
|
``` |
|
|
|
**Question**: **Show me the day with the most users joining** |
|
```sql |
|
SELECT created_at::DATE AS day, COUNT(*) AS user_count |
|
FROM users |
|
GROUP BY day |
|
ORDER BY user_count DESC |
|
LIMIT 1; |
|
``` |
|
**Question**: **Show me the project that has a task with the most comments** |
|
```sql |
|
SELECT p.project_name, t.task_name, COUNT(c.comment_id) AS comment_count |
|
FROM projects p |
|
JOIN tasks t ON p.project_id = t.project_id |
|
JOIN comments c ON t.task_id = c.task_id |
|
GROUP BY p.project_name, t.task_name |
|
ORDER BY comment_count DESC |
|
LIMIT 1; |
|
``` |
|
|
|
**Question**: **What is the ratio of users with gmail addresses vs without?** |
|
```sql |
|
SELECT |
|
SUM(CASE WHEN email ILIKE '%@gmail.com%' THEN 1 ELSE 0 END)::FLOAT / NULLIF(SUM(CASE WHEN email NOT ILIKE '%@gmail.com%' THEN 1 ELSE 0 END), 0) AS gmail_ratio |
|
FROM |
|
users; |
|
``` |