Update README.md
Browse files
README.md
CHANGED
@@ -16,4 +16,28 @@ AlpaGo is an adapter model trained using the Qlora technique on top of the GPT-N
|
|
16 |
1. Clone the AlpaGo repository:
|
17 |
```python
|
18 |
!git clone https://github.com/exampleuser/alphago.git
|
19 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
1. Clone the AlpaGo repository:
|
17 |
```python
|
18 |
!git clone https://github.com/exampleuser/alphago.git
|
19 |
+
```
|
20 |
+
2. Install the latest version of Python 3 if you haven't already.
|
21 |
+
|
22 |
+
3. Install the required dependencies:
|
23 |
+
```python
|
24 |
+
!pip install -r requirements.txt
|
25 |
+
```
|
26 |
+
## Usage
|
27 |
+
|
28 |
+
You can utilize AlpaGo to perform natural language processing tasks. Here's an example of how to use it:
|
29 |
+
|
30 |
+
```python
|
31 |
+
from alphago import AlpaGo
|
32 |
+
|
33 |
+
# Load the AlpaGo model
|
34 |
+
model = AlpaGo()
|
35 |
+
|
36 |
+
# Example input sentence
|
37 |
+
input_text = "Hello, AlpaGo!"
|
38 |
+
|
39 |
+
# Send the sentence to the model and get the results
|
40 |
+
output = model.process_text(input_text)
|
41 |
+
|
42 |
+
# Print the output
|
43 |
+
print(output)```
|