cdactvm's picture
End of training
f60f493 verified
metadata
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: w2v-bert-malayalam-v2
    results: []

w2v-bert-malayalam-v2

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1097
  • Wer: 0.0913

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 38000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3486 0.2859 2000 0.3181 0.4042
0.291 0.5718 4000 0.2474 0.3020
0.2196 0.8577 6000 0.2151 0.2710
0.1915 1.1437 8000 0.2131 0.2488
0.1811 1.4295 10000 0.1786 0.2204
0.1881 1.7154 12000 0.1720 0.2061
0.1598 2.0014 14000 0.1768 0.1834
0.1429 2.2873 16000 0.1741 0.1708
0.1389 2.5732 18000 0.1646 0.1560
0.1314 2.8591 20000 0.1387 0.1490
0.0953 3.1451 22000 0.1457 0.1373
0.0915 3.4310 24000 0.1287 0.1238
0.0871 3.7169 26000 0.1255 0.1145
0.0903 4.0029 28000 0.1181 0.1069
0.0723 4.2887 30000 0.1226 0.1022
0.0599 4.5746 32000 0.1115 0.0992
0.0576 4.8605 34000 0.1087 0.0977
0.0473 5.1465 36000 0.1079 0.0928
0.0485 5.4324 38000 0.1097 0.0913

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0