--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: w2v-bert-malayalam-v2 results: [] --- # w2v-bert-malayalam-v2 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1097 - Wer: 0.0913 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 38000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 0.3486 | 0.2859 | 2000 | 0.3181 | 0.4042 | | 0.291 | 0.5718 | 4000 | 0.2474 | 0.3020 | | 0.2196 | 0.8577 | 6000 | 0.2151 | 0.2710 | | 0.1915 | 1.1437 | 8000 | 0.2131 | 0.2488 | | 0.1811 | 1.4295 | 10000 | 0.1786 | 0.2204 | | 0.1881 | 1.7154 | 12000 | 0.1720 | 0.2061 | | 0.1598 | 2.0014 | 14000 | 0.1768 | 0.1834 | | 0.1429 | 2.2873 | 16000 | 0.1741 | 0.1708 | | 0.1389 | 2.5732 | 18000 | 0.1646 | 0.1560 | | 0.1314 | 2.8591 | 20000 | 0.1387 | 0.1490 | | 0.0953 | 3.1451 | 22000 | 0.1457 | 0.1373 | | 0.0915 | 3.4310 | 24000 | 0.1287 | 0.1238 | | 0.0871 | 3.7169 | 26000 | 0.1255 | 0.1145 | | 0.0903 | 4.0029 | 28000 | 0.1181 | 0.1069 | | 0.0723 | 4.2887 | 30000 | 0.1226 | 0.1022 | | 0.0599 | 4.5746 | 32000 | 0.1115 | 0.0992 | | 0.0576 | 4.8605 | 34000 | 0.1087 | 0.0977 | | 0.0473 | 5.1465 | 36000 | 0.1079 | 0.0928 | | 0.0485 | 5.4324 | 38000 | 0.1097 | 0.0913 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0