File size: 69,453 Bytes
5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 e9aa08a 5c5e063 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 |
from logging import warn
import torch
from transformers.models.bart.modeling_bart import *
from transformers.models.bart.modeling_bart import _expand_mask
import torch.nn as nn
from torch.nn import BCEWithLogitsLoss
import sys
AUTO_MAP = {
"AutoModel": "modeling_lsg_bart.LSGBartModel",
"AutoModelForCausalLM": "modeling_lsg_bart.LSGBartForCausalLM",
"AutoModelForQuestionAnswering": "modeling_lsg_bart.LSGBartForQuestionAnswering",
"AutoModelForSequenceClassification": "modeling_lsg_bart.LSGBartForSequenceClassification",
"AutoModelForSeq2SeqLM": "modeling_lsg_bart.LSGBartForConditionalGeneration"
}
class LSGBartConfig(BartConfig):
"""
This class overrides :class:`~transformers.RobertaConfig`. Please check the superclass for the appropriate
documentation alongside usage examples.
"""
base_model_prefix = "lsg"
model_type = "bart"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__(
self,
adaptive=True,
base_model_prefix="lsg",
block_size=128,
lsh_num_pre_rounds=1,
num_global_tokens=1,
pass_global_tokens_to_decoder=True,
pool_with_global=True,
sparse_block_size=128,
sparsity_factor=2,
sparsity_type="norm",
**kwargs
):
"""Constructs LSGConfig."""
super().__init__(**kwargs)
self.adaptive = adaptive
self.auto_map = AUTO_MAP
self.base_model_prefix = base_model_prefix
self.block_size = block_size
self.lsh_num_pre_rounds = lsh_num_pre_rounds
self.num_global_tokens = num_global_tokens
self.pass_global_tokens_to_decoder = pass_global_tokens_to_decoder
self.pool_with_global = pool_with_global
self.sparse_block_size = sparse_block_size
self.sparsity_factor = sparsity_factor
self.sparsity_type = sparsity_type
if sparsity_type not in [None, "none", "norm", "lsh", "pooling", "stride"]:
logger.warning(
"[WARNING CONFIG]: sparsity_mode not in [None, 'none', 'norm', 'lsh', 'pooling', 'stride'], setting sparsity_type=None, computation will skip sparse attention")
self.sparsity_type = None
if self.sparsity_type == "stride":
if self.sparsity_factor > self.encoder_attention_heads:
logger.warning(
"[WARNING CONFIG]: sparsity_factor > encoder_attention_heads is not recommended for stride sparsity"
)
if self.num_global_tokens < 1:
logger.warning(
"[WARNING CONFIG]: num_global_tokens < 1 is not compatible, setting num_global_tokens=1"
)
self.num_global_tokens = 1
elif self.num_global_tokens > 512:
logger.warning(
"[WARNING CONFIG]: num_global_tokens > 512 is not compatible, setting num_global_tokens=512"
)
self.num_global_tokens = 512
if self.sparsity_factor > 0:
assert self.block_size % self.sparsity_factor == 0, "[ERROR CONFIG]: block_size must be divisible by sparsity_factor"
assert self.block_size//self.sparsity_factor >= 1, "[ERROR CONFIG]: make sure block_size >= sparsity_factor"
def shift_tokens_right(input_ids, pad_token_id, decoder_start_token_id):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
def _make_causal_mask(input_ids_shape, dtype, past_key_values_length=0):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len), float("-inf"))
mask_cond = torch.arange(mask.size(-1))
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype), mask], dim=-1)
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
def _expand_mask(mask, dtype, tgt_len=None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(inverted_mask.bool(), torch.finfo(dtype).min)
class BaseSelfAttention(nn.Module):
def __init__(
self,
embed_dim,
num_heads,
dropout=0.0,
is_decoder=False,
bias=True,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim ** -0.5
self.is_decoder = is_decoder
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (
self.num_heads,
self.head_dim,
)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def reshape_output(self, context_layer):
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,)
return context_layer.view(*new_context_layer_shape)
def project_QKV(self, hidden_states):
query_layer = self.transpose_for_scores(self.q_proj(hidden_states))
key_layer = self.transpose_for_scores(self.k_proj(hidden_states))
value_layer = self.transpose_for_scores(self.v_proj(hidden_states))
return query_layer, key_layer, value_layer
class BaseAttentionProduct(nn.Module):
def __init__(self, config):
"""
Compute attention: softmax(Q @ K.T) @ V
"""
super().__init__()
self.dropout = nn.Dropout(config.attention_dropout)
def forward(self, query_layer, key_layer, value_layer, attention_mask=None):
d = query_layer.shape[-1]
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = query_layer @ key_layer.transpose(-1, -2) / math.sqrt(d)
del query_layer
del key_layer
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in RobertaModel forward() function)
attention_scores = attention_scores + attention_mask
del attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
context_layer = self.dropout(attention_probs) @ value_layer
return context_layer
class LSGAttentionProduct(nn.Module):
def __init__(self, config, block_size=None, sparse_block_size=None, sparsity_factor=4):
"""
Compute block or overlapping blocks attention products
"""
super().__init__()
self.block_size = block_size
self.sparse_block_size = sparse_block_size
self.sparsity_factor = sparsity_factor
if self.block_size is None:
self.block_size = config.block_size
if self.sparse_block_size is None:
self.sparse_block_size = config.sparse_block_size
# Shape of blocks
self.local_shapes = (self.block_size*3, self.block_size)
if self.sparse_block_size and self.sparsity_factor > 0:
self.sparse_shapes = (self.sparse_block_size*3, self.block_size//self.sparsity_factor)
self.attention = BaseAttentionProduct(config)
def build_lsg_inputs(self, hidden_states, sparse_hidden_states, global_hidden_states, is_attn_mask=False):
# Build local tokens
local_hidden_states = self.reshape_to_local_block(hidden_states, is_attn_mask)
del hidden_states
# Build sparse tokens
if sparse_hidden_states is not None:
sparse_hidden_states = self.reshape_to_sparse_block(sparse_hidden_states, is_attn_mask)
return self.cat_global_sparse_local_tokens(global_hidden_states, sparse_hidden_states, local_hidden_states)
def forward(
self,
query_layer,
key_layer,
value_layer,
attention_mask=None,
sparse_key=None,
sparse_value=None,
sparse_mask=None,
global_key=None,
global_value=None,
global_mask=None
):
# Input batch, heads, length, hidden_size
n, h, t, d = query_layer.size()
n_blocks = t // self.block_size
assert t % self.block_size == 0
key_layer = self.build_lsg_inputs(
key_layer,
sparse_key,
global_key
)
del sparse_key
del global_key
value_layer = self.build_lsg_inputs(
value_layer,
sparse_value,
global_value
)
del sparse_value
del global_value
attention_mask = self.build_lsg_inputs(
attention_mask,
sparse_mask,
global_mask.transpose(-1, -2),
is_attn_mask=True
).transpose(-1, -2)
del sparse_mask
del global_mask
# expect (..., t, d) shape
# Compute attention
context_layer = self.attention(
query_layer=self.chunk(query_layer, n_blocks),
key_layer=key_layer,
value_layer=value_layer,
attention_mask=attention_mask
)
return context_layer.reshape(n, h, -1, d)
def reshape_to_local_block(self, hidden_states, is_attn_mask=False):
size, step = self.local_shapes
s = (size - step) // 2
# Pad before block reshaping
if is_attn_mask:
pad_value = -10000
hidden_states = hidden_states.transpose(-1, -2)
else:
pad_value = 0
hidden_states = torch.nn.functional.pad(
hidden_states.transpose(-1, -2),
pad=(s, s),
value=pad_value
).transpose(-1, -2)
# Make blocks
hidden_states = hidden_states.unfold(-2, size=size, step=step).transpose(-1, -2)
return hidden_states
def reshape_to_sparse_block(self, hidden_states, is_attn_mask=False):
size, step = self.sparse_shapes
# In case of odd case
odd_offset = (step % 2)
# n, h, t, d*2 + 1
size = size*2
s = (size - step) // 2 + odd_offset
# Pad before block reshaping
if is_attn_mask:
pad_value = -10000
hidden_states = hidden_states.transpose(-1, -2)
else:
pad_value = 0
hidden_states = torch.nn.functional.pad(
hidden_states.transpose(-1, -2),
pad=(s, s),
value=pad_value
).transpose(-1, -2)
# Make blocks
hidden_states = hidden_states.unfold(-2, size=size, step=step).transpose(-1, -2)
# Fix case where block_size == sparsify_factor
if odd_offset:
hidden_states = hidden_states[..., :-1, :, :]
# Indexes for selection
u = (size - self.block_size * 3 // self.sparsity_factor) // 2 + odd_offset
s = self.sparse_block_size
u_ = u + odd_offset
return torch.cat([hidden_states[..., u-s:u, :], hidden_states[..., -u_:-u_+s, :]], dim=-2)
def cat_global_sparse_local_tokens(self, x_global, x_sparse=None, x_local=None, dim=-2):
n, h, b, t, d = x_local.size()
x_global = x_global.unsqueeze(-3).expand(-1, -1, b, -1, -1)
if x_sparse is not None:
return torch.cat([x_global, x_sparse, x_local], dim=dim)
return torch.cat([x_global, x_local], dim=dim)
def chunk(self, x, n_blocks):
t, d = x.size()[-2:]
return x.reshape(*x.size()[:-2], n_blocks, -1, d)
class LSGBartEncoderAttention(BaseSelfAttention):
'''
Compute local attention with overlapping blocs
Use global attention for tokens with highest norm
'''
def __init__(
self,
config,
embed_dim,
num_heads,
dropout
):
super().__init__(embed_dim, num_heads, dropout)
self.block_size = config.block_size
self.sparse_block_size = config.sparse_block_size
self.num_global_tokens = config.num_global_tokens
self.sparsity_factor = config.sparsity_factor
self.attention = LSGAttentionProduct(
config,
block_size=config.block_size,
sparse_block_size=config.sparse_block_size,
sparsity_factor=self.sparsity_factor,
)
self.full_attention = BaseAttentionProduct(config)
sparse_functions = {
"norm": self.get_sparse_tokens_with_norm,
"pooling": self.get_sparse_tokens_with_pooling,
"lsh": self.get_sparse_tokens_with_lsh,
"stride": self.get_sparse_tokens_with_stride,
}
self.sparsity_type = config.sparsity_type
self.get_sparse_elements = sparse_functions.get(self.sparsity_type, lambda x, y, z: (None, None, None))
if config.sparsity_type == "lsh":
self.lsh_num_pre_rounds = config.lsh_num_pre_rounds
def get_sparse_tokens_with_norm(self, keys, values, mask):
if self.sparsity_factor == 1:
return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
with torch.no_grad():
block_size = min(self.block_size, self.sparse_block_size)
key_norm = keys.detach().norm(dim=-1, keepdim=True)
key_norm = key_norm * ~mask.transpose(-1, -2).bool()
key_norm = self.chunk(key_norm, block_size)
n, h, b, t, d = key_norm.size()
idx = key_norm.argsort(dim=-2)
del key_norm
idx += (torch.arange(b, device=keys.device)*t).reshape(1, 1, b, 1, 1)
split = (t - block_size // self.sparsity_factor, block_size // self.sparsity_factor)
sparse_idx = idx.split(split, -2)[-1].reshape(n, h, -1, 1)
d = keys.size()[-1]
keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2)
return keys, values, mask
def get_sparse_tokens_with_pooling(self, keys, values, mask):
if self.sparsity_factor == 1:
return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
keys = self.chunk(keys, self.sparsity_factor)
values = self.chunk(values, self.sparsity_factor)
n, h, b, t, d = keys.size()
mask = mask.reshape(n, 1, b, 1, t)
mask = ~mask.transpose(-1, -2).bool()
keys = keys * mask
values = values * mask
mask = mask.sum(dim=-2)
keys = keys.sum(dim=-2) / (mask + 1e-6)
values = values.sum(dim=-2) / (mask + 1e-6)
mask = - (1. - mask.clamp(0, 1)) * 1e4
return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.expand(-1, h, -1, -1).transpose(-1, -2)
def get_sparse_tokens_with_stride(self, keys, values, mask):
if self.sparsity_factor == 1:
return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
n, h, t, d = keys.size()
sparse_idx = torch.arange(t // self.sparsity_factor, device=keys.device) * self.sparsity_factor
sparse_idx = sparse_idx.reshape(1, 1, -1, 1) + (torch.arange(h, device=keys.device) % self.sparsity_factor).reshape(1, h, 1, 1)
sparse_idx = sparse_idx.expand(n, h, -1, 1)
"""
t, b = self.block_size, t // self.block_size
sparse_idx = torch.arange(t // self.sparsity_factor, device=keys.device) * self.sparsity_factor
sparse_idx = sparse_idx.reshape(1, 1, 1, -1, 1) + (torch.arange(h, device=keys.device) % self.sparsity_factor).reshape(1, h, 1, 1, 1)
sparse_idx = sparse_idx + torch.arange(b, device=keys.device).reshape(1, 1, -1, 1, 1) * t
sparse_idx = sparse_idx.reshape(1, h, -1, 1).expand(n, h, -1, 1)
t, b = self.block_size, t // self.block_size
sparse_idx = torch.arange(t // self.sparsity_factor, device=keys.device)
sparse_idx = sparse_idx.reshape(1, 1, 1, -1, 1) + torch.arange(h, device=keys.device).reshape(1, h, 1, 1, 1) * (t // self.sparsity_factor)
sparse_idx = (sparse_idx % t)
#sparse_idx[..., -t//2:, :] = (sparse_idx[..., -t//2:, :] + t//2) % t
sparse_idx = sparse_idx + torch.arange(b, device=keys.device).reshape(1, 1, -1, 1, 1) * t
sparse_idx = sparse_idx.reshape(1, h, -1, 1).expand(n, h, -1, 1)
"""
keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2)
return keys, values, mask
def get_sparse_tokens_with_lsh(self, keys, values, mask):
if self.sparsity_factor == 1:
return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
block_size = min(self.block_size, self.sparse_block_size)
keys = self.chunk(keys, block_size)
values = self.chunk(values, block_size)
n, h, b, t, d = keys.size()
mask = mask.reshape(n, 1, b, 1, t)
mask = ~mask.transpose(-1, -2).bool()
keys = keys * mask
values = values * mask
mask = mask.expand(-1, h, -1, -1, -1).float()
extra_factor = 1
for _ in range(self.lsh_num_pre_rounds):
keys, values, mask = self.lsh_round(keys, values, mask, t*extra_factor)
keys, values, mask = self.lsh_round(keys, values, mask, t//self.sparsity_factor)
keys /= mask + 1e-8
values /= mask + 1e-8
mask = -10000 * (1. - mask.clamp(0, 1))
return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.transpose(-1, -2).reshape(n, h, 1, -1)
def lsh_round(self, keys, values, mask, output_size):
with torch.no_grad():
n_hashes = output_size // 2
n, h, b, t, d = keys.size()
binary_mask = mask.clamp(0, 1)
indexes = (torch.nn.functional.normalize(keys, dim=-1) * binary_mask) @ torch.randn(1, h, 1, d, n_hashes, device=keys.device)
indexes = torch.cat([indexes, -indexes], dim=-1).argmax(dim=-1, keepdim=True)
n, h, b, t, d = keys.size()
x_ = torch.zeros(n, h, b, output_size, d, device=keys.device)
mask_ = torch.zeros(n, h, b, output_size, 1, device=keys.device)
keys = torch.scatter_add(x_, dim=-2, index=indexes.expand(-1, -1, -1, -1, d), src=keys)
values = torch.scatter_add(x_, dim=-2, index=indexes.expand(-1, -1, -1, -1, d), src=values)
mask = torch.scatter_add(mask_, dim=-2, index=indexes, src=mask)
return keys[..., :output_size, :], values[..., :output_size, :], mask[..., :output_size, :]
def forward(
self,
hidden_states,
attention_mask=None,
layer_head_mask=None,
output_attentions=False
):
query_layer, key_layer, value_layer = self.project_QKV(hidden_states)
outputs = self.not_causal_forward(
query_layer,
key_layer,
value_layer,
attention_mask=attention_mask[:, :, :1, :],
head_mask=layer_head_mask,
output_attentions=output_attentions
)
return self.out_proj(outputs), None, None
def not_causal_forward(
self,
query_layer,
key_layer,
value_layer,
attention_mask=None,
head_mask=None,
output_attentions=False,
):
n, h, t, d = query_layer.size()
# Cat global mask
attention_mask = torch.nn.functional.pad(attention_mask, (self.num_global_tokens, 0), value=0)
# Use normal attention if local attention covers every tokens
if t <= 2 * self.block_size + self.num_global_tokens:
context_layer = self.full_attention(
query_layer=query_layer,
key_layer=key_layer,
value_layer=value_layer,
attention_mask=attention_mask
)
if head_mask is not None:
context_layer = context_layer * head_mask[:, :, :1, :1]
return self.reshape_output(context_layer)
# Split input into global tokens and other tokens
split = (self.num_global_tokens, t - self.num_global_tokens)
global_query, query_layer = query_layer.split(split, dim=-2)
# Get global_attention
bos = self.full_attention(
query_layer=global_query,
key_layer=key_layer,
value_layer=value_layer,
attention_mask=attention_mask
)
# Split K Q M on global and non global
global_key, key_layer = key_layer.split(split, dim=-2)
global_value, value_layer = value_layer.split(split, dim=-2)
global_mask, attention_mask = attention_mask.split(split, dim=-1)
n, h, t, d = key_layer.size()
# Get sparse idx
sparse_key, sparse_value, sparse_mask = (None, None, None)
if self.sparse_block_size and self.sparsity_factor > 0:
sparse_key, sparse_value, sparse_mask = self.get_sparse_elements(key_layer, value_layer, attention_mask)
# Expand masks on heads
attention_mask = attention_mask.expand(-1, h, -1, -1)
global_mask = global_mask.expand(-1, h, -1, -1)
# Compute dot product attention
context_layer = self.attention(
query_layer,
key_layer,
value_layer,
attention_mask,
sparse_key=sparse_key,
sparse_value=sparse_value,
sparse_mask=sparse_mask,
global_key=global_key,
global_value=global_value,
global_mask=global_mask
)
# Merge global and local-sparse tokens
context_layer = torch.cat([bos, context_layer], dim=-2)
if head_mask is not None:
context_layer = context_layer * head_mask[:, :, :1, :1]
context_layer = self.reshape_output(context_layer)
return context_layer
def chunk(self, x, chunk_size):
n, h, t, d = x.size()
return x.reshape(n, h, -1, chunk_size, d)
class LSGBartDecoderAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim,
num_heads,
dropout=0.0,
is_decoder=False,
bias=True,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim ** -0.5
self.is_decoder = is_decoder
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor, seq_len, bsz):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states,
key_value_states=None,
past_key_value=None,
attention_mask=None,
layer_head_mask=None,
output_attentions=False,
):
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned aross GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
class LSGBartLearnedPositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings, embedding_dim):
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 2
super().__init__(num_embeddings + self.offset, embedding_dim)
def forward(self, input_ids_shape, past_key_values_length=0):
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
bsz, seq_len = input_ids_shape[:2]
positions = torch.arange(
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
)
return super().forward(positions + self.offset)
class LSGBartEncoderLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = LSGBartEncoderAttention(
config=config,
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states,
attention_mask,
layer_head_mask,
output_attentions=False,
):
"""
Args:
hidden_states (:obj:`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (:obj:`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (:obj:`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
if hidden_states.dtype == torch.float16 and (
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class LSGBartDecoderLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = LSGBartDecoderAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = LSGBartDecoderAttention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
layer_head_mask=None,
cross_attn_layer_head_mask=None,
past_key_value=None,
output_attentions=False,
use_cache=True,
):
"""
Args:
hidden_states (:obj:`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (:obj:`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (:obj:`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (:obj:`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (:obj:`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
cross_attn_layer_head_mask (:obj:`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size `(decoder_attention_heads,)`.
past_key_value (:obj:`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
returned tensors for more detail.
"""
residual = hidden_states
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
class LSGBartClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(
self,
input_dim,
inner_dim,
num_classes,
pooler_dropout,
):
super().__init__()
self.dense = nn.Linear(input_dim, inner_dim)
self.dropout = nn.Dropout(p=pooler_dropout)
self.out_proj = nn.Linear(inner_dim, num_classes)
def forward(self, hidden_states):
hidden_states = self.dropout(hidden_states)
hidden_states = self.dense(hidden_states)
hidden_states = torch.tanh(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.out_proj(hidden_states)
return hidden_states
class LSGBartPretrainedModel(PreTrainedModel):
config_class = LSGBartConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_keys_to_ignore_on_load_unexpected = [r"encoder\.version", r"decoder\.version"]
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (LSGBartDecoder, LSGBartEncoder)):
module.gradient_checkpointing = value
@property
def dummy_inputs(self):
pad_token = self.config.pad_token_id
input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
dummy_inputs = {
"attention_mask": input_ids.ne(pad_token),
"input_ids": input_ids,
}
return dummy_inputs
class PretrainedLSGBartModel(LSGBartPretrainedModel):
def __init_subclass__(self):
warnings.warn(
"The class `PretrainedBartModel` has been depreciated, please use `LSGBartPretrainedModel` instead.",
FutureWarning,
)
class LSGBartEncoder(LSGBartPretrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
:class:`BartEncoderLayer`.
Args:
config: BartConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config, embed_tokens=None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
self.embed_positions = LSGBartLearnedPositionalEmbedding(
config.max_position_embeddings,
embed_dim,
)
self.layers = nn.ModuleList([LSGBartEncoderLayer(config) for _ in range(config.encoder_layers)])
self.layernorm_embedding = nn.LayerNorm(embed_dim)
#
assert hasattr(config, "num_global_tokens")
self.num_global_tokens = config.num_global_tokens
self.pad_idx = config.pad_token_id
assert hasattr(config, "block_size") and hasattr(config, "adaptive")
self.block_size = config.block_size
self.adaptive = config.adaptive
self.pool_with_global = config.pool_with_global
self.pass_global_tokens_to_decoder = config.pass_global_tokens_to_decoder
self.global_embeddings = nn.Embedding(512, embedding_dim=config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(self,
input_ids=None,
attention_mask=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None
):
inputs_ = input_ids if input_ids is not None else inputs_embeds
n, t = inputs_.size()[:2]
if attention_mask is None:
attention_mask = torch.ones(n, t, device=inputs_.device)
b = self.block_size * 2
pad = t % self.block_size
# Check if t is multiple of block_size and pad
if t > b and pad > 0:
pad_length = self.block_size - pad
if input_ids is not None:
input_ids = torch.nn.functional.pad(input_ids, (0, pad_length), value=self.pad_idx)
else:
inputs_embeds = torch.nn.functional.pad(inputs_embeds.transpose(-1, -2), (0, pad_length), value=0.).transpose(-1, -2)
attention_mask = torch.nn.functional.pad(attention_mask, (0, pad_length), value=0)
# else adaptive sequence length
elif self.adaptive:
# Get last non zero mask index
s = int(attention_mask.cumsum(dim=-1).argmax(dim=-1).max()) + 1
if s < t and self.block_size is not None:
s = max(2, s // self.block_size + 1) * self.block_size if s > b else s
if input_ids is not None:
input_ids = input_ids[:, :s]
else:
inputs_embeds = inputs_embeds[:, :s]
attention_mask = attention_mask[:, :s]
n, t_ = attention_mask.size()
encoder_outputs = self.forward_with_adaptive(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
context = encoder_outputs[0]
diff = t - t_
if self.pass_global_tokens_to_decoder:
offset = self.num_global_tokens
else:
if self.pool_with_global:
context[:, self.num_global_tokens] = context[:, 0]
context = context[..., self.num_global_tokens:, :]
offset = 0
# Adapt sequence to initial shape
if diff > 0:
context = torch.nn.functional.pad(context.transpose(-1, -2), pad=(0, diff), value=0).transpose(-1, -2)
elif diff < 0:
context = context[:, :t + offset]
if return_dict:
encoder_outputs.last_hidden_state = context
else:
encoder_outputs = (context, ) + encoder_outputs[1:]
return encoder_outputs
def forward_with_adaptive(
self,
input_ids=None,
attention_mask=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos = self.embed_positions(input_shape)
hidden_states = inputs_embeds + embed_pos
# Add global tokens
n, t, d = hidden_states.size()
global_idx = torch.arange(self.num_global_tokens, device=hidden_states.device).reshape(1, -1)
hidden_states = torch.cat([self.global_embeddings(global_idx).expand(n, -1, -1), hidden_states], dim=-2)
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.size()[0] != (len(self.layers)):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
)
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(encoder_layer),
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class LSGBartDecoder(LSGBartPretrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a :class:`LSGBartDecoderLayer`
Args:
config: BartConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config, embed_tokens=None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.adaptive = config.adaptive
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
self.embed_positions = LSGBartLearnedPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
)
self.layers = nn.ModuleList([LSGBartDecoderLayer(config) for _ in range(config.decoder_layers)])
self.layernorm_embedding = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length
).to(self.device)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
combined_attention_mask = (
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
)
return combined_attention_mask
def resize_inputs(self, inputs_embeds, attention_mask):
pad = 0
max_len = int(attention_mask.sum(dim=-1).max())
pad = attention_mask.size()[-1] - max_len
inputs_embeds = inputs_embeds[:, :max_len]
attention_mask = attention_mask[..., :max_len]
return pad, inputs_embeds, attention_mask
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
# Resize to reduce computation
pad = 0
if self.adaptive:
if attention_mask is not None:
pad, inputs_embeds, attention_mask = self.resize_inputs(inputs_embeds, attention_mask)
input_shape = inputs_embeds.size()[:-1]
if encoder_attention_mask is not None:
_, encoder_hidden_states, encoder_attention_mask = self.resize_inputs(encoder_hidden_states, encoder_attention_mask)
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
# embed positions
positions = self.embed_positions(input_shape, past_key_values_length)
hidden_states = inputs_embeds + positions
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != (len(self.layers)):
raise ValueError(
"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop):
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, use_cache)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# Resize to original shape
hidden_states = torch.nn.functional.pad(hidden_states.transpose(-1, -2), pad=(0, pad), value=0).transpose(-1, -2)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
class LSGBartModel(LSGBartPretrainedModel):
def __init__(self, config):
super().__init__(config)
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
self.pass_global_tokens_to_decoder = config.pass_global_tokens_to_decoder
self.num_global_tokens = config.num_global_tokens
self.encoder = LSGBartEncoder(config, self.shared)
self.decoder = LSGBartDecoder(config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, value):
self.shared = value
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def forward(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs=None,
past_key_values=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
# different to other models, Bart automatically creates decoder_input_ids from
# input_ids if no decoder_input_ids are provided
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
input_ids, self.config.pad_token_id, self.config.decoder_start_token_id
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# Pad mask for global tokens
if self.pass_global_tokens_to_decoder:
attention_mask = torch.nn.functional.pad(attention_mask, pad=(self.num_global_tokens, 0), value=1)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
class LSGBartForConditionalGeneration(BartForConditionalGeneration, LSGBartPretrainedModel):
base_model_prefix = "model"
_keys_to_ignore_on_load_missing = [r"final_logits_bias", r"lm_head\.weight"]
def __init__(self, config):
LSGBartPretrainedModel.__init__(self, config)
self.model = LSGBartModel(config)
self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
# Initialize weights and apply final processing
self.post_init()
class LSGBartForSequenceClassification(BartForSequenceClassification, LSGBartPretrainedModel):
def __init__(self, config: LSGBartConfig, **kwargs):
LSGBartPretrainedModel.__init__(self, config, **kwargs)
self.model = LSGBartModel(config)
self.classification_head = LSGBartClassificationHead(
config.d_model,
config.d_model,
config.num_labels,
config.classifier_dropout,
)
self.model._init_weights(self.classification_head.dense)
self.model._init_weights(self.classification_head.out_proj)
class LSGBartForQuestionAnswering(BartForQuestionAnswering, LSGBartPretrainedModel):
def __init__(self, config: LSGBartConfig):
LSGBartPretrainedModel.__init__(self, config)
config.num_labels = 2
self.num_labels = config.num_labels
self.model = LSGBartModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
self.model._init_weights(self.qa_outputs)
class LSGBartDecoderWrapper(LSGBartPretrainedModel):
"""
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
used in combination with the :class:`~transformers.EncoderDecoderModel` framework.
"""
def __init__(self, config: LSGBartConfig):
super().__init__(config)
self.decoder = LSGBartDecoder(config)
def forward(self, *args, **kwargs):
return self.decoder(*args, **kwargs)
class LSGBartForCausalLM(BartForCausalLM, LSGBartPretrainedModel):
def __init__(self, config: LSGBartConfig):
config = copy.deepcopy(config)
config.is_decoder = True
config.is_encoder_decoder = False
LSGBartPretrainedModel.__init__(self, config)
self.model = LSGBartDecoderWrapper(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def str_to_class(classname):
return getattr(sys.modules[__name__], classname)
# Register model in Auto API
try:
LSGBartConfig.register_for_auto_class()
for key, value in AUTO_MAP.items():
str_to_class(value.split(".")[-1]).register_for_auto_class(key)
except:
warn("AutoRegister isn't available, you'll have to manually copy modeling.py after .save_pretrained(...).")
warn("Update to transformers >= 4.17.0 to fix.") |