File size: 60,277 Bytes
0faa84c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74be8d5
0faa84c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74be8d5
0faa84c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74be8d5
0faa84c
 
 
 
 
 
 
 
74be8d5
 
 
0faa84c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
from logging import warn
import torch
from transformers.models.bart.modeling_bart import *
from transformers.models.bart.modeling_bart import _expand_mask
import torch.nn as nn
from torch.nn import BCEWithLogitsLoss
import sys

AUTO_MAP = {
        "AutoModel": "modeling_lsg_bart.LSGBartModel",
        "AutoModelForCausalLM": "modeling_lsg_bart.LSGBartForCausalLM",
        "AutoModelForQuestionAnswering": "modeling_lsg_bart.LSGBartForQuestionAnswering",
        "AutoModelForSequenceClassification": "modeling_lsg_bart.LSGBartForSequenceClassification",
        "AutoModelForSeq2SeqLM": "modeling_lsg_bart.LSGBartForConditionalGeneration"
    }

class LSGBartConfig(BartConfig):
    """
    This class overrides :class:`~transformers.RobertaConfig`. Please check the superclass for the appropriate
    documentation alongside usage examples.
    """

    base_model_prefix = "lsg"
    model_type = "bart"
    keys_to_ignore_at_inference = ["past_key_values"]
    attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}

    def __init__(
        self,
        adaptive=True,
        base_model_prefix="lsg",
        block_size=128,
        lsh_num_pre_rounds=1,
        num_global_tokens=1,
        pass_global_tokens_to_decoder=True,
        pool_with_global=True,
        sparse_block_size=128,
        sparsity_factor=2,
        sparsity_type="norm",
        **kwargs
        ):
        """Constructs LSGConfig."""
        super().__init__(**kwargs)
        
        self.adaptive = adaptive
        self.auto_map = AUTO_MAP
        self.base_model_prefix = base_model_prefix
        self.block_size = block_size
        self.lsh_num_pre_rounds = lsh_num_pre_rounds
        self.num_global_tokens = num_global_tokens
        self.pass_global_tokens_to_decoder = pass_global_tokens_to_decoder
        self.pool_with_global = pool_with_global
        self.sparse_block_size = sparse_block_size
        self.sparsity_factor = sparsity_factor
        self.sparsity_type = sparsity_type

        if sparsity_type not in [None, "none", "norm", "lsh", "pooling", "stride", "block_stride"]:
            logger.warning(
                "[WARNING CONFIG]: sparsity_mode not in [None, 'none', 'norm', 'lsh', 'pooling', 'stride', 'block_stride'], setting sparsity_type=None, computation will skip sparse attention")
            self.sparsity_type = None

        if self.sparsity_type in ["stride", "block_stride"]:
            if self.sparsity_factor > self.encoder_attention_heads:
                logger.warning(
                "[WARNING CONFIG]: sparsity_factor > encoder_attention_heads is not recommended for stride/block_stride sparsity"
            )
        
        if self.num_global_tokens < 1:
            logger.warning(
                "[WARNING CONFIG]: num_global_tokens < 1 is not compatible, setting num_global_tokens=1"
            )
            self.num_global_tokens = 1
        elif self.num_global_tokens > 512:
            logger.warning(
                "[WARNING CONFIG]: num_global_tokens > 512 is not compatible, setting num_global_tokens=512"
            )
            self.num_global_tokens = 512
        
        if self.sparsity_factor > 0:
            assert self.block_size % self.sparsity_factor == 0, "[ERROR CONFIG]: block_size must be divisible by sparsity_factor"
            assert self.block_size//self.sparsity_factor >= 1, "[ERROR CONFIG]: make sure block_size >= sparsity_factor"
            
        
def shift_tokens_right(input_ids, pad_token_id, decoder_start_token_id):
    """
    Shift input ids one token to the right.
    """
    shifted_input_ids = input_ids.new_zeros(input_ids.shape)
    shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
    shifted_input_ids[:, 0] = decoder_start_token_id

    if pad_token_id is None:
        raise ValueError("self.model.config.pad_token_id has to be defined.")
    # replace possible -100 values in labels by `pad_token_id`
    shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)

    return shifted_input_ids


def _make_causal_mask(input_ids_shape, dtype, past_key_values_length=0):
    """
    Make causal mask used for bi-directional self-attention.
    """
    bsz, tgt_len = input_ids_shape
    mask = torch.full((tgt_len, tgt_len), float("-inf"))
    mask_cond = torch.arange(mask.size(-1))
    mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
    mask = mask.to(dtype)

    if past_key_values_length > 0:
        mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype), mask], dim=-1)
    return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)


def _expand_mask(mask, dtype, tgt_len=None):
    """
    Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
    """
    bsz, src_len = mask.size()
    tgt_len = tgt_len if tgt_len is not None else src_len

    expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)

    inverted_mask = 1.0 - expanded_mask

    return inverted_mask.masked_fill(inverted_mask.bool(), torch.finfo(dtype).min)


class BaseSelfAttention(nn.Module):

    def __init__(
        self,
        embed_dim,
        num_heads,
        dropout=0.0,
        is_decoder=False,
        bias=True,
        ):

        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads

        if (self.head_dim * num_heads) != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
                f" and `num_heads`: {num_heads})."
            )
        self.scaling = self.head_dim ** -0.5
        self.is_decoder = is_decoder

        self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (
            self.num_heads,
            self.head_dim,
        )
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def reshape_output(self, context_layer):
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,)
        return context_layer.view(*new_context_layer_shape)

    def project_QKV(self, hidden_states):

        query_layer = self.transpose_for_scores(self.q_proj(hidden_states))
        key_layer = self.transpose_for_scores(self.k_proj(hidden_states))
        value_layer = self.transpose_for_scores(self.v_proj(hidden_states))
        return query_layer, key_layer, value_layer

    
class BaseAttentionProduct(nn.Module):

    def __init__(self, config):
        """
        Compute attention: softmax(Q @ K.T) @ V
        """
        super().__init__()
        self.dropout = nn.Dropout(config.attention_dropout)

    def forward(self, query_layer, key_layer, value_layer, attention_mask=None):
        
        d = query_layer.shape[-1]

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = query_layer @ key_layer.transpose(-1, -2) / math.sqrt(d)

        del query_layer
        del key_layer

        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in RobertaModel forward() function)
            attention_scores = attention_scores + attention_mask
            del attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        context_layer = self.dropout(attention_probs) @ value_layer

        return context_layer


class LSGAttentionProduct(nn.Module):

    def __init__(self, config, block_size=None, sparse_block_size=None, sparsity_factor=4):
        """
        Compute block or overlapping blocks attention products
        """
        super().__init__()
 
        self.block_size = block_size
        self.sparse_block_size = sparse_block_size
        self.sparsity_factor = sparsity_factor

        if self.block_size is None:
            self.block_size = config.block_size

        if self.sparse_block_size is None:
            self.sparse_block_size = config.sparse_block_size

        # Shape of blocks
        self.local_shapes = (self.block_size*3, self.block_size)
        if self.sparse_block_size and self.sparsity_factor > 0:
            self.sparse_shapes = (self.sparse_block_size*3, self.block_size//self.sparsity_factor)

        self.attention = BaseAttentionProduct(config)
        
    def build_lsg_inputs(self, hidden_states, sparse_hidden_states, global_hidden_states, is_attn_mask=False):
        
        # Build local tokens
        local_hidden_states = self.reshape_to_local_block(hidden_states, is_attn_mask)
        del hidden_states

        # Build sparse tokens
        if sparse_hidden_states is not None:
            sparse_hidden_states = self.reshape_to_sparse_block(sparse_hidden_states, is_attn_mask)
        
        return self.cat_global_sparse_local_tokens(global_hidden_states, sparse_hidden_states, local_hidden_states)

    def forward(
        self, 
        query_layer, 
        key_layer, 
        value_layer, 
        attention_mask=None, 
        sparse_key=None,
        sparse_value=None, 
        sparse_mask=None, 
        global_key=None, 
        global_value=None, 
        global_mask=None
        ):

        # Input batch, heads, length, hidden_size
        n, h, t, d = query_layer.size()
        n_blocks = t // self.block_size
        assert t % self.block_size == 0

        key_layer = self.build_lsg_inputs(
            key_layer, 
            sparse_key, 
            global_key
            )
        del sparse_key
        del global_key

        value_layer = self.build_lsg_inputs(
            value_layer, 
            sparse_value, 
            global_value
            )
        del sparse_value
        del global_value

        attention_mask = self.build_lsg_inputs(
            attention_mask, 
            sparse_mask, 
            global_mask.transpose(-1, -2), 
            is_attn_mask=True
            ).transpose(-1, -2)
        del sparse_mask
        del global_mask

        # expect (..., t, d) shape
        # Compute attention
        context_layer = self.attention(
                query_layer=self.chunk(query_layer, n_blocks), 
                key_layer=key_layer,
                value_layer=value_layer,
                attention_mask=attention_mask
                )
                
        return context_layer.reshape(n, h, -1, d)
    
    def reshape_to_local_block(self, hidden_states, is_attn_mask=False):
        
        size, step = self.local_shapes
        s = (size - step) // 2

        # Pad before block reshaping
        if is_attn_mask:
            pad_value = -10000  
            hidden_states = hidden_states.transpose(-1, -2)
        else: 
            pad_value = 0

        hidden_states = torch.nn.functional.pad(
            hidden_states.transpose(-1, -2), 
            pad=(s, s),
            value=pad_value
            ).transpose(-1, -2)

        # Make blocks
        hidden_states = hidden_states.unfold(-2, size=size, step=step).transpose(-1, -2)

        return hidden_states

    def reshape_to_sparse_block(self, hidden_states, is_attn_mask=False):
        
        size, step = self.sparse_shapes

        # In case of odd case
        odd_offset = (step % 2)

        # n, h, t, d*2 + 1
        size = size*2 
        s = (size - step) // 2 + odd_offset

        # Pad before block reshaping
        if is_attn_mask:
            pad_value = -10000  
            hidden_states = hidden_states.transpose(-1, -2)
        else: 
            pad_value = 0

        hidden_states = torch.nn.functional.pad(
            hidden_states.transpose(-1, -2), 
            pad=(s, s),
            value=pad_value
            ).transpose(-1, -2)

        # Make blocks
        hidden_states = hidden_states.unfold(-2, size=size, step=step).transpose(-1, -2)

        # Fix case where block_size == sparsify_factor
        if odd_offset: 
            hidden_states = hidden_states[..., :-1, :, :]

        # Indexes for selection
        u = (size - self.block_size * 3 // self.sparsity_factor) // 2 + odd_offset
        s = self.sparse_block_size

        u_ = u + odd_offset
        return torch.cat([hidden_states[..., u-s:u, :], hidden_states[..., -u_:-u_+s, :]], dim=-2)

    def cat_global_sparse_local_tokens(self, x_global, x_sparse=None, x_local=None, dim=-2):

        n, h, b, t, d = x_local.size()
        x_global = x_global.unsqueeze(-3).expand(-1, -1, b, -1, -1)
        if x_sparse is not None:
            return torch.cat([x_global, x_sparse, x_local], dim=dim)
        return torch.cat([x_global, x_local], dim=dim)

    def chunk(self, x, n_blocks):

        t, d = x.size()[-2:]
        return x.reshape(*x.size()[:-2], n_blocks, -1, d)


class LSGBartEncoderAttention(BaseSelfAttention):
    '''
    Compute local attention with overlapping blocs
    Use global attention for tokens with highest norm
    '''
    def __init__(
        self, 
        config, 
        embed_dim,
        num_heads,
        dropout
        ):

        super().__init__(embed_dim, num_heads, dropout)

        self.block_size = config.block_size
        self.sparse_block_size = config.sparse_block_size
        self.num_global_tokens = config.num_global_tokens
        self.sparsity_factor = config.sparsity_factor

        self.attention = LSGAttentionProduct(
            config, 
            block_size=config.block_size, 
            sparse_block_size=config.sparse_block_size, 
            sparsity_factor=self.sparsity_factor, 
            )

        self.full_attention = BaseAttentionProduct(config)

        sparse_functions = {
            "norm": self.get_sparse_tokens_with_norm, 
            "pooling": self.get_sparse_tokens_with_pooling,
            "lsh": self.get_sparse_tokens_with_lsh,
            "stride": self.get_sparse_tokens_with_stride,
            "block_stride": self.get_sparse_tokens_with_block_stride,
            }
        
        self.sparsity_type = config.sparsity_type
        self.get_sparse_elements = sparse_functions.get(self.sparsity_type, lambda x, y, z: (None, None, None))
            
        if config.sparsity_type == "lsh":
            self.lsh_num_pre_rounds = config.lsh_num_pre_rounds
        
    def get_sparse_tokens_with_norm(self, keys, values, mask):
        
        if self.sparsity_factor == 1:
            return keys, values, mask.expand(-1, keys.size()[1], -1, -1)

        with torch.no_grad():

            block_size = min(self.block_size, self.sparse_block_size)
            key_norm = keys.detach().norm(dim=-1, keepdim=True)
            key_norm = key_norm * ~mask.transpose(-1, -2).bool()
            key_norm = self.chunk(key_norm, block_size)

            n, h, b, t, d = key_norm.size()
            
            idx = key_norm.argsort(dim=-2) 
            del key_norm
            idx += (torch.arange(b, device=keys.device)*t).reshape(1, 1, b, 1, 1)

            split = (t - block_size // self.sparsity_factor, block_size // self.sparsity_factor)
            sparse_idx = idx.split(split, -2)[-1].reshape(n, h, -1, 1)
        
        d = keys.size()[-1]
        keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
        values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
        mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2)

        return keys, values, mask

    def get_sparse_tokens_with_pooling(self, keys, values, mask):
        
        if self.sparsity_factor == 1:
            return keys, values, mask.expand(-1, keys.size()[1], -1, -1)

        keys = self.chunk(keys, self.sparsity_factor)
        values = self.chunk(values, self.sparsity_factor)

        n, h, b, t, d = keys.size()
        mask = mask.reshape(n, 1, b, 1, t)
        mask = ~mask.transpose(-1, -2).bool()

        keys = keys * mask
        values = values * mask

        mask = mask.sum(dim=-2)
        keys = keys.sum(dim=-2) / (mask + 1e-6)
        values = values.sum(dim=-2) / (mask + 1e-6)

        mask = - (1. - mask.clamp(0, 1)) * 1e4
        return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.expand(-1, h, -1, -1).transpose(-1, -2)

    def get_sparse_tokens_with_stride(self, keys, values, mask):

        if self.sparsity_factor == 1:
            return keys, values, mask.expand(-1, keys.size()[1], -1, -1)

        n, h, t, d = keys.size()
        sparse_idx = torch.arange(t // self.sparsity_factor, device=keys.device) * self.sparsity_factor
        sparse_idx = sparse_idx.reshape(1, 1, -1, 1) + (torch.arange(h, device=keys.device) % self.sparsity_factor).reshape(1, h, 1, 1)
        sparse_idx = sparse_idx.expand(n, h, -1, 1)

        keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
        values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
        mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2)

        return keys, values, mask

    def get_sparse_tokens_with_block_stride(self, keys, values, mask):

        if self.sparsity_factor == 1:
            return keys, values, mask.expand(-1, keys.size()[1], -1, -1)

        n, h, t, d = keys.size()

        t, b = self.block_size, t // self.block_size
        sparse_idx = torch.arange(t // self.sparsity_factor, device=keys.device)
        sparse_idx = sparse_idx.reshape(1, 1, 1, -1, 1) + torch.arange(h, device=keys.device).reshape(1, h, 1, 1, 1) * (t // self.sparsity_factor)
        sparse_idx = (sparse_idx % t) 
        sparse_idx = sparse_idx + torch.arange(b, device=keys.device).reshape(1, 1, -1, 1, 1) * t
        sparse_idx = sparse_idx.reshape(1, h, -1, 1).expand(n, h, -1, 1)

        keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
        values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
        mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2)

        return keys, values, mask
        
    def get_sparse_tokens_with_lsh(self, keys, values, mask):
        
        if self.sparsity_factor == 1:
            return keys, values, mask.expand(-1, keys.size()[1], -1, -1)

        block_size = min(self.block_size, self.sparse_block_size)
        keys = self.chunk(keys, block_size)
        values = self.chunk(values, block_size)

        n, h, b, t, d = keys.size()
        mask = mask.reshape(n, 1, b, 1, t)
        mask = ~mask.transpose(-1, -2).bool()

        keys = keys * mask
        values = values * mask
        mask = mask.expand(-1, h, -1, -1, -1).float()

        extra_factor = 1
        
        for _ in range(self.lsh_num_pre_rounds):
            keys, values, mask = self.lsh_round(keys, values, mask, t*extra_factor)

        keys, values, mask = self.lsh_round(keys, values, mask, t//self.sparsity_factor)
        keys /= mask + 1e-8
        values /= mask + 1e-8

        mask = -10000 * (1. - mask.clamp(0, 1))

        return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.transpose(-1, -2).reshape(n, h, 1, -1)

    def lsh_round(self, keys, values, mask, output_size):

        with torch.no_grad():

            n_hashes = output_size // 2
            n, h, b, t, d = keys.size()
            binary_mask = mask.clamp(0, 1)

            indexes = (torch.nn.functional.normalize(keys, dim=-1) * binary_mask) @ torch.randn(1, h, 1, d, n_hashes, device=keys.device)
            indexes = torch.cat([indexes, -indexes], dim=-1).argmax(dim=-1, keepdim=True)

        n, h, b, t, d = keys.size()
        
        x_ = torch.zeros(n, h, b, output_size, d, device=keys.device)
        mask_ = torch.zeros(n, h, b, output_size, 1, device=keys.device)
        keys = torch.scatter_add(x_, dim=-2, index=indexes.expand(-1, -1, -1, -1, d), src=keys)
        values = torch.scatter_add(x_, dim=-2, index=indexes.expand(-1, -1, -1, -1, d), src=values)
        mask = torch.scatter_add(mask_, dim=-2, index=indexes, src=mask)

        return keys[..., :output_size, :], values[..., :output_size, :], mask[..., :output_size, :]

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        layer_head_mask=None,
        output_attentions=False
        ):

        query_layer, key_layer, value_layer = self.project_QKV(hidden_states)
        outputs = self.not_causal_forward(
            query_layer,
            key_layer,
            value_layer, 
            attention_mask=attention_mask[:, :, :1, :], 
            head_mask=layer_head_mask, 
            output_attentions=output_attentions
            )
        
        return self.out_proj(outputs), None, None

    def not_causal_forward(
        self,
        query_layer,
        key_layer,
        value_layer,
        attention_mask=None,
        head_mask=None,
        output_attentions=False,
        ):

        n, h, t, d = query_layer.size()

        # Cat global mask
        attention_mask = torch.nn.functional.pad(attention_mask, (self.num_global_tokens, 0), value=0)
        
        # Use normal attention if local attention covers every tokens
        if t <= 2 * self.block_size + self.num_global_tokens:
            context_layer = self.full_attention(
                query_layer=query_layer, 
                key_layer=key_layer, 
                value_layer=value_layer, 
                attention_mask=attention_mask
                )

            if head_mask is not None:
                context_layer = context_layer * head_mask[:, :, :1, :1]
            return self.reshape_output(context_layer)

        # Split input into global tokens and other tokens
        split = (self.num_global_tokens, t - self.num_global_tokens)
        global_query, query_layer = query_layer.split(split, dim=-2)
        
        # Get global_attention
        bos = self.full_attention(
            query_layer=global_query, 
            key_layer=key_layer, 
            value_layer=value_layer, 
            attention_mask=attention_mask
            )
        
        # Split K Q M on global and non global
        global_key, key_layer = key_layer.split(split, dim=-2)
        global_value, value_layer = value_layer.split(split, dim=-2)
        global_mask, attention_mask = attention_mask.split(split, dim=-1)
        
        n, h, t, d = key_layer.size()

        # Get sparse idx
        sparse_key, sparse_value, sparse_mask = (None, None, None)

        if self.sparse_block_size and self.sparsity_factor > 0:
            sparse_key, sparse_value, sparse_mask = self.get_sparse_elements(key_layer, value_layer, attention_mask)
        
        # Expand masks on heads
        attention_mask = attention_mask.expand(-1, h, -1, -1)
        global_mask = global_mask.expand(-1, h, -1, -1)

        # Compute dot product attention
        context_layer = self.attention(
            query_layer, 
            key_layer, 
            value_layer, 
            attention_mask,
            sparse_key=sparse_key, 
            sparse_value=sparse_value, 
            sparse_mask=sparse_mask,
            global_key=global_key,
            global_value=global_value,
            global_mask=global_mask
            )

        # Merge global and local-sparse tokens
        context_layer = torch.cat([bos, context_layer], dim=-2)
        if head_mask is not None:
            context_layer = context_layer * head_mask[:, :, :1, :1]
        context_layer = self.reshape_output(context_layer)
        
        return context_layer

    def chunk(self, x, chunk_size):

        n, h, t, d = x.size()
        return x.reshape(n, h, -1, chunk_size, d)


class LSGBartDecoderAttention(nn.Module):

    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(
        self,
        embed_dim,
        num_heads,
        dropout=0.0,
        is_decoder=False,
        bias=True,
        ):

        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads

        if (self.head_dim * num_heads) != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
                f" and `num_heads`: {num_heads})."
            )
        self.scaling = self.head_dim ** -0.5
        self.is_decoder = is_decoder

        self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)

    def _shape(self, tensor, seq_len, bsz):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
        self,
        hidden_states,
        key_value_states=None,
        past_key_value=None,
        attention_mask=None,
        layer_head_mask=None,
        output_attentions=False,
        ):

        # if key_value_states are provided this layer is used as a cross-attention layer
        # for the decoder
        is_cross_attention = key_value_states is not None

        bsz, tgt_len, _ = hidden_states.size()

        # get query proj
        query_states = self.q_proj(hidden_states) * self.scaling
        # get key, value proj
        if is_cross_attention and past_key_value is not None:
            # reuse k,v, cross_attentions
            key_states = past_key_value[0]
            value_states = past_key_value[1]
        elif is_cross_attention:
            # cross_attentions
            key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
            value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
        elif past_key_value is not None:
            # reuse k, v, self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)
        else:
            # self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)

        if self.is_decoder:
            # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
            # Further calls to cross_attention layer can then reuse all cross-attention
            # key/value_states (first "if" case)
            # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
            # all previous decoder key/value_states. Further calls to uni-directional self-attention
            # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
            # if encoder bi-directional self-attention `past_key_value` is always `None`
            past_key_value = (key_states, value_states)

        proj_shape = (bsz * self.num_heads, -1, self.head_dim)
        query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
        key_states = key_states.view(*proj_shape)
        value_states = value_states.view(*proj_shape)

        src_len = key_states.size(1)
        attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))

        if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
            raise ValueError(
                f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}"
            )

        if attention_mask is not None:
            if attention_mask.size() != (bsz, 1, tgt_len, src_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
                )
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        attn_weights = nn.functional.softmax(attn_weights, dim=-1)

        if layer_head_mask is not None:
            if layer_head_mask.size() != (self.num_heads,):
                raise ValueError(
                    f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
                )
            attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        if output_attentions:
            # this operation is a bit awkward, but it's required to
            # make sure that attn_weights keeps its gradient.
            # In order to do so, attn_weights have to be reshaped
            # twice and have to be reused in the following
            attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
        else:
            attn_weights_reshaped = None

        attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)

        attn_output = torch.bmm(attn_probs, value_states)

        if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output.size()}"
            )

        attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
        attn_output = attn_output.transpose(1, 2)

        # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
        # partitioned aross GPUs when using tensor-parallelism.
        attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)

        attn_output = self.out_proj(attn_output)

        return attn_output, attn_weights_reshaped, past_key_value


class LSGBartLearnedPositionalEmbedding(nn.Embedding):
    """
    This module learns positional embeddings up to a fixed maximum size.
    """

    def __init__(self, num_embeddings, embedding_dim):
        # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
        # and adjust num_embeddings appropriately. Other models don't have this hack
        self.offset = 2
        super().__init__(num_embeddings + self.offset, embedding_dim)

    def forward(self, input_ids_shape, past_key_values_length=0):

        """`input_ids_shape` is expected to be [bsz x seqlen]."""
        bsz, seq_len = input_ids_shape[:2]
        positions = torch.arange(
            past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
        )
        return super().forward(positions + self.offset)


class LSGBartEncoderLayer(nn.Module):

    def __init__(self, config):

        super().__init__()
        self.embed_dim = config.d_model
        self.self_attn = LSGBartEncoderAttention(
            config=config,
            embed_dim=self.embed_dim,
            num_heads=config.encoder_attention_heads,
            dropout=config.attention_dropout,
        )
        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout
        self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
        self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = nn.LayerNorm(self.embed_dim)

    def forward(
        self,
        hidden_states,
        attention_mask,
        layer_head_mask,
        output_attentions=False,
        ):
        """
        Args:
            hidden_states (:obj:`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
            attention_mask (:obj:`torch.FloatTensor`): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            layer_head_mask (:obj:`torch.FloatTensor`): mask for attention heads in a given layer of size
                `(encoder_attention_heads,)`.
            output_attentions (:obj:`bool`, `optional`):
                Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
                returned tensors for more detail.
        """
        residual = hidden_states
        hidden_states, attn_weights, _ = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            layer_head_mask=layer_head_mask,
            output_attentions=output_attentions,
        )
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)

        residual = hidden_states
        hidden_states = self.activation_fn(self.fc1(hidden_states))
        hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
        hidden_states = self.fc2(hidden_states)
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states
        hidden_states = self.final_layer_norm(hidden_states)

        if hidden_states.dtype == torch.float16 and (
            torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
        ):
            clamp_value = torch.finfo(hidden_states.dtype).max - 1000
            hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs


class LSGBartDecoderLayer(nn.Module):

    def __init__(self, config):

        super().__init__()
        self.embed_dim = config.d_model

        self.self_attn = LSGBartDecoderAttention(
            embed_dim=self.embed_dim,
            num_heads=config.decoder_attention_heads,
            dropout=config.attention_dropout,
            is_decoder=True,
        )
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout

        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.encoder_attn = LSGBartDecoderAttention(
            self.embed_dim,
            config.decoder_attention_heads,
            dropout=config.attention_dropout,
            is_decoder=True,
        )
        self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
        self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = nn.LayerNorm(self.embed_dim)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        layer_head_mask=None,
        cross_attn_layer_head_mask=None,
        past_key_value=None,
        output_attentions=False,
        use_cache=True,
        ):
        """
        Args:
            hidden_states (:obj:`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (:obj:`torch.FloatTensor`): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            encoder_hidden_states (:obj:`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
            encoder_attention_mask (:obj:`torch.FloatTensor`): encoder attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            layer_head_mask (:obj:`torch.FloatTensor`): mask for attention heads in a given layer of size
                `(encoder_attention_heads,)`.
            cross_attn_layer_head_mask (:obj:`torch.FloatTensor`): mask for cross-attention heads in a given layer of
                size `(decoder_attention_heads,)`.
            past_key_value (:obj:`Tuple(torch.FloatTensor)`): cached past key and value projection states
            output_attentions (:obj:`bool`, `optional`):
                Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
                returned tensors for more detail.
        """
        residual = hidden_states

        # Self Attention
        # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
        self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
        # add present self-attn cache to positions 1,2 of present_key_value tuple

        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            past_key_value=self_attn_past_key_value,
            attention_mask=attention_mask,
            layer_head_mask=layer_head_mask,
            output_attentions=output_attentions,
        )
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)

        # Cross-Attention Block
        cross_attn_present_key_value = None
        cross_attn_weights = None
        if encoder_hidden_states is not None:
            residual = hidden_states

            # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
            cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
            
            hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
                hidden_states=hidden_states,
                key_value_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
                layer_head_mask=cross_attn_layer_head_mask,
                past_key_value=cross_attn_past_key_value,
                output_attentions=output_attentions,
            )
            hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
            hidden_states = residual + hidden_states
            hidden_states = self.encoder_attn_layer_norm(hidden_states)

            # add cross-attn to positions 3,4 of present_key_value tuple
            present_key_value = present_key_value + cross_attn_present_key_value

        # Fully Connected
        residual = hidden_states
        hidden_states = self.activation_fn(self.fc1(hidden_states))
        hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
        hidden_states = self.fc2(hidden_states)
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states
        hidden_states = self.final_layer_norm(hidden_states)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights, cross_attn_weights)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


class LSGBartClassificationHead(nn.Module):
    """Head for sentence-level classification tasks."""

    def __init__(
        self,
        input_dim,
        inner_dim,
        num_classes,
        pooler_dropout,
        ):

        super().__init__()
        self.dense = nn.Linear(input_dim, inner_dim)
        self.dropout = nn.Dropout(p=pooler_dropout)
        self.out_proj = nn.Linear(inner_dim, num_classes)

    def forward(self, hidden_states):

        hidden_states = self.dropout(hidden_states)
        hidden_states = self.dense(hidden_states)
        hidden_states = torch.tanh(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.out_proj(hidden_states)
        return hidden_states


class LSGBartPretrainedModel(PreTrainedModel):

    config_class = LSGBartConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _keys_to_ignore_on_load_unexpected = [r"encoder\.version", r"decoder\.version"]

    def _init_weights(self, module):

        std = self.config.init_std
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    def _set_gradient_checkpointing(self, module, value=False):

        if isinstance(module, (LSGBartDecoder, LSGBartEncoder)):
            module.gradient_checkpointing = value

    @property
    def dummy_inputs(self):
        pad_token = self.config.pad_token_id
        input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
        dummy_inputs = {
            "attention_mask": input_ids.ne(pad_token),
            "input_ids": input_ids,
        }
        return dummy_inputs


class PretrainedLSGBartModel(LSGBartPretrainedModel):

    def __init_subclass__(self):
        warnings.warn(
            "The class `PretrainedBartModel` has been depreciated, please use `LSGBartPretrainedModel` instead.",
            FutureWarning,
        )


class LSGBartEncoder(LSGBartPretrainedModel):
    """
    Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
    :class:`BartEncoderLayer`.
    Args:
        config: BartConfig
        embed_tokens (nn.Embedding): output embedding
    """

    def __init__(self, config, embed_tokens=None):

        super().__init__(config)
        self.dropout = config.dropout
        self.layerdrop = config.encoder_layerdrop

        embed_dim = config.d_model
        self.padding_idx = config.pad_token_id
        self.max_source_positions = config.max_position_embeddings
        self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0

        if embed_tokens is not None:
            self.embed_tokens = embed_tokens
        else:
            self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)

        self.embed_positions = LSGBartLearnedPositionalEmbedding(
            config.max_position_embeddings,
            embed_dim,
        )
        self.layers = nn.ModuleList([LSGBartEncoderLayer(config) for _ in range(config.encoder_layers)])
        self.layernorm_embedding = nn.LayerNorm(embed_dim)

        # 
        assert hasattr(config, "num_global_tokens")
        self.num_global_tokens = config.num_global_tokens
        self.pad_idx = config.pad_token_id

        assert hasattr(config, "block_size") and hasattr(config, "adaptive")
        self.block_size = config.block_size
        self.adaptive = config.adaptive
        self.pool_with_global = config.pool_with_global
        self.pass_global_tokens_to_decoder = config.pass_global_tokens_to_decoder

        self.global_embeddings = nn.Embedding(512, embedding_dim=config.d_model)

        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    def forward(self,
        input_ids=None,
        attention_mask=None,
        head_mask=None,
        inputs_embeds=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None
        ):

        
        inputs_ = input_ids if input_ids is not None else inputs_embeds
        n, t = inputs_.size()[:2]

        if attention_mask is None:
            attention_mask = torch.ones(n, t, device=inputs_.device)
            
        b = self.block_size * 2
        pad = t % self.block_size
        
        # Check if t is multiple of block_size and pad
        if self.adaptive and t > b and pad > 0:
            pad_length = self.block_size - pad
            if input_ids is not None:
                input_ids = torch.nn.functional.pad(input_ids, (0, pad_length), value=self.pad_idx)
            else:
                inputs_embeds = torch.nn.functional.pad(inputs_embeds.transpose(-1, -2), (0, pad_length), value=0.).transpose(-1, -2)
            attention_mask = torch.nn.functional.pad(attention_mask, (0, pad_length), value=0)
        
        n, t_ = attention_mask.size()
        
        encoder_outputs = self.forward_with_adaptive(
            input_ids=input_ids,
            attention_mask=attention_mask,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            )
        
        context = encoder_outputs[0]
        diff = t - t_

        if self.pass_global_tokens_to_decoder:
            offset = self.num_global_tokens
        else:
            if self.pool_with_global:
                context[:, self.num_global_tokens] = context[:, 0]
            context = context[..., self.num_global_tokens:, :]
            offset = 0

        # Adapt sequence to initial shape
        if diff < 0:
            context = context[:, :t + offset]
        
        if return_dict:
            encoder_outputs.last_hidden_state = context
        else:
            encoder_outputs = (context, ) + encoder_outputs[1:]
        
        return encoder_outputs

    def forward_with_adaptive(
        self,
        input_ids=None,
        attention_mask=None,
        head_mask=None,
        inputs_embeds=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        ):
        
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale

        embed_pos = self.embed_positions(input_shape)
        hidden_states = inputs_embeds + embed_pos

        # Add global tokens
        n, t, d = hidden_states.size()
        global_idx = torch.arange(self.num_global_tokens, device=hidden_states.device).reshape(1, -1)
        hidden_states = torch.cat([self.global_embeddings(global_idx).expand(n, -1, -1), hidden_states], dim=-2)

        hidden_states = self.layernorm_embedding(hidden_states)
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)

        # expand attention_mask
        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        # check if head_mask has a correct number of layers specified if desired
        if head_mask is not None:
            if head_mask.size()[0] != (len(self.layers)):
                raise ValueError(
                    f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
                )

        for idx, encoder_layer in enumerate(self.layers):
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            dropout_probability = random.uniform(0, 1)
            if self.training and (dropout_probability < self.layerdrop):  # skip the layer
                layer_outputs = (None, None)
            else:
                if self.gradient_checkpointing and self.training:

                    def create_custom_forward(module):
                        def custom_forward(*inputs):
                            return module(*inputs, output_attentions)

                        return custom_forward

                    layer_outputs = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(encoder_layer),
                        hidden_states,
                        attention_mask,
                        (head_mask[idx] if head_mask is not None else None),
                    )
                else:
                    layer_outputs = encoder_layer(
                        hidden_states,
                        attention_mask,
                        layer_head_mask=(head_mask[idx] if head_mask is not None else None),
                        output_attentions=output_attentions,
                    )

                hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
        )


class LSGBartDecoder(BartDecoder, LSGBartPretrainedModel):
    """
    Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a :class:`LSGBartDecoderLayer`
    Args:
        config: BartConfig
        embed_tokens (nn.Embedding): output embedding
    """

    def __init__(self, config, embed_tokens=None):
        
        LSGBartPretrainedModel.__init__(self, config)
        
        self.dropout = config.dropout
        self.layerdrop = config.decoder_layerdrop
        self.padding_idx = config.pad_token_id
        self.max_target_positions = config.max_position_embeddings
        self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
        self.adaptive = config.adaptive

        if embed_tokens is not None:
            self.embed_tokens = embed_tokens
        else:
            self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)

        self.embed_positions = LSGBartLearnedPositionalEmbedding(
            config.max_position_embeddings,
            config.d_model,
        )
        self.layers = nn.ModuleList([LSGBartDecoderLayer(config) for _ in range(config.decoder_layers)])
        self.layernorm_embedding = nn.LayerNorm(config.d_model)

        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()


class LSGBartModel(LSGBartPretrainedModel):

    def __init__(self, config):

        super().__init__(config)

        padding_idx, vocab_size = config.pad_token_id, config.vocab_size
        self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
        self.pass_global_tokens_to_decoder = config.pass_global_tokens_to_decoder
        self.num_global_tokens = config.num_global_tokens
        self.encoder = LSGBartEncoder(config, self.shared)
        self.decoder = LSGBartDecoder(config, self.shared)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.shared

    def set_input_embeddings(self, value):
        self.shared = value
        self.encoder.embed_tokens = self.shared
        self.decoder.embed_tokens = self.shared

    def get_encoder(self):
        return self.encoder

    def get_decoder(self):
        return self.decoder

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        decoder_input_ids=None,
        decoder_attention_mask=None,
        head_mask=None,
        decoder_head_mask=None,
        cross_attn_head_mask=None,
        encoder_outputs=None,
        past_key_values=None,
        inputs_embeds=None,
        decoder_inputs_embeds=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        ):

        # different to other models, Bart automatically creates decoder_input_ids from
        # input_ids if no decoder_input_ids are provided
        if decoder_input_ids is None and decoder_inputs_embeds is None:
            decoder_input_ids = shift_tokens_right(
                input_ids, self.config.pad_token_id, self.config.decoder_start_token_id
            )

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                attention_mask=attention_mask,
                head_mask=head_mask,
                inputs_embeds=inputs_embeds,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
        # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
        elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
            encoder_outputs = BaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
            )

        # Pad mask for global tokens
        if self.pass_global_tokens_to_decoder:
            attention_mask = torch.nn.functional.pad(attention_mask, pad=(self.num_global_tokens, 0), value=1)
            
        # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            encoder_hidden_states=encoder_outputs[0],
            encoder_attention_mask=attention_mask,
            head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            past_key_values=past_key_values,
            inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if not return_dict:
            return decoder_outputs + encoder_outputs

        return Seq2SeqModelOutput(
            last_hidden_state=decoder_outputs.last_hidden_state,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )


class LSGBartForConditionalGeneration(BartForConditionalGeneration, LSGBartPretrainedModel):
    
    base_model_prefix = "model"
    _keys_to_ignore_on_load_missing = [r"final_logits_bias", r"lm_head\.weight"]

    def __init__(self, config):

        LSGBartPretrainedModel.__init__(self, config)
        self.model = LSGBartModel(config)
        self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
        self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
    
        # Initialize weights and apply final processing
        self.post_init()


class LSGBartForSequenceClassification(BartForSequenceClassification, LSGBartPretrainedModel):

    def __init__(self, config: LSGBartConfig, **kwargs):

        LSGBartPretrainedModel.__init__(self, config, **kwargs)
        self.model = LSGBartModel(config)
        self.classification_head = LSGBartClassificationHead(
            config.d_model,
            config.d_model,
            config.num_labels,
            config.classifier_dropout,
        )
        self.model._init_weights(self.classification_head.dense)
        self.model._init_weights(self.classification_head.out_proj)


class LSGBartForQuestionAnswering(BartForQuestionAnswering, LSGBartPretrainedModel):

    def __init__(self, config: LSGBartConfig):

        LSGBartPretrainedModel.__init__(self, config)

        config.num_labels = 2
        self.num_labels = config.num_labels

        self.model = LSGBartModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        self.model._init_weights(self.qa_outputs)


class LSGBartDecoderWrapper(LSGBartPretrainedModel):
    """
    This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
    used in combination with the :class:`~transformers.EncoderDecoderModel` framework.
    """

    def __init__(self, config: LSGBartConfig):
        super().__init__(config)
        self.decoder = LSGBartDecoder(config)

    def forward(self, *args, **kwargs):
        return self.decoder(*args, **kwargs)


class LSGBartForCausalLM(BartForCausalLM, LSGBartPretrainedModel):

    def __init__(self, config: LSGBartConfig):

        config = copy.deepcopy(config)
        config.is_decoder = True
        config.is_encoder_decoder = False
        LSGBartPretrainedModel.__init__(self, config)
        self.model = LSGBartDecoderWrapper(config)

        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()


def str_to_class(classname):
    return getattr(sys.modules[__name__], classname)

# Register model in Auto API
try:
    LSGBartConfig.register_for_auto_class()
    for key, value in AUTO_MAP.items():
        str_to_class(value.split(".")[-1]).register_for_auto_class(key)
except:
    warn("AutoRegister isn't available, you'll have to manually copy modeling.py after .save_pretrained(...).")
    warn("Update to transformers >= 4.17.0 to fix.")