File size: 28,841 Bytes
73ab90f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "p5S2GYrJe6lb"
},
"source": [
"# Image to text for Airbnb images"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "lG3i-iiWe7l_"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/cassandra@myliser.lu/env/venv/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
}
],
"source": [
"import torch\n",
"import torch\n",
"from torch.utils.data import Dataset\n",
"from PIL import Image\n",
"import pandas as pd\n",
"from transformers import AutoProcessor\n",
"import numpy as np\n",
"from torchvision import transforms\n",
"from transformers import BlipForConditionalGeneration\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "FpRt69nWfFFv"
},
"source": [
"### Create dataset with images and text and process them with BLIP's processor"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"id": "1i4BMba0ln91"
},
"outputs": [],
"source": [
"class Airbnb(Dataset):\n",
" def __init__(self, csv_file, data_augmentation):\n",
" self.df = pd.read_csv(csv_file)\n",
" self.processor = AutoProcessor.from_pretrained(\"Salesforce/blip-image-captioning-base\")\n",
" def __len__(self):\n",
" return self.df.shape[0]\n",
"\n",
" def __getitem__(self, index):\n",
" path_to_im = \"/home/cassandra@myliser.lu/image_to_text/blip/living_room/\" + str(self.df.listing_id_x[index])+ '_' + str(self.df.photo_number_x[index])\n",
" image = Image.open(path_to_im).convert(\"RGB\")\n",
" label = str(self.df.answers[index])\n",
" encoding = self.processor(images=image, text=label, padding=\"max_length\", return_tensors=\"pt\")\n",
" encoding = {k:v.squeeze() for k,v in encoding.items()}\n",
" return encoding"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "e2sr84dsfXt7"
},
"source": [
"### Import CSV file"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"id": "Zl0asqIYpp4-"
},
"outputs": [],
"source": [
"csv_file = \"/home/cassandra@myliser.lu/image_to_text/blip/Picture_Descriptions_All-Copy.csv\""
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"id": "8uUjuOj-qGsv"
},
"outputs": [],
"source": [
"dataset = Airbnb(csv_file, data_augmentation = None)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "0IK-kRFxfd3H"
},
"source": [
"### Split train/test dataset"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"id": "93wmNMwgqwgg"
},
"outputs": [],
"source": [
"train_size = int(0.8 * len(dataset))\n",
"test_size = len(dataset) - train_size\n",
"train_dataset, test_dataset = torch.utils.data.random_split(dataset, [train_size, test_size])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "3VWdqSeWfhAN"
},
"source": [
"### Create dataloader"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"id": "0pJdUuSTqy-5"
},
"outputs": [],
"source": [
"train_loader = torch.utils.data.DataLoader(\n",
" train_dataset,\n",
" batch_size=1,\n",
" shuffle=True\n",
" )\n",
"test_loader = torch.utils.data.DataLoader(\n",
" test_dataset,\n",
" batch_size=1,\n",
" shuffle=True\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "mnwwxvB_fjlx"
},
"source": [
"### Import model and create device"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"id": "jY6h9kpgq0KX"
},
"outputs": [],
"source": [
"model = BlipForConditionalGeneration.from_pretrained(\"Salesforce/blip-image-captioning-base\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"id": "9rk60pCKfUkV"
},
"outputs": [],
"source": [
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "HbiDQqzngCbn"
},
"source": [
"### Train loop"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "i39jlG5Aq1Yo",
"outputId": "a5292b17-f2b9-4a38-db0a-3f97d4923aa4"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch: 0\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"We strongly recommend passing in an `attention_mask` since your input_ids may be padded. See https://huggingface.co/docs/transformers/troubleshooting#incorrect-output-when-padding-tokens-arent-masked.\n"
]
},
{
"ename": "KeyboardInterrupt",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[9], line 25\u001b[0m\n\u001b[1;32m 22\u001b[0m total_examples \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m labels\u001b[38;5;241m.\u001b[39mnumel()\n\u001b[1;32m 24\u001b[0m loss\u001b[38;5;241m.\u001b[39mbackward()\n\u001b[0;32m---> 25\u001b[0m \u001b[43moptimizer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstep\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 26\u001b[0m optimizer\u001b[38;5;241m.\u001b[39mzero_grad()\n\u001b[1;32m 28\u001b[0m average_loss \u001b[38;5;241m=\u001b[39m total_loss \u001b[38;5;241m/\u001b[39m \u001b[38;5;28mlen\u001b[39m(train_loader)\n",
"File \u001b[0;32m~/env/venv/lib/python3.10/site-packages/torch/optim/optimizer.py:385\u001b[0m, in \u001b[0;36mOptimizer.profile_hook_step.<locals>.wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 380\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 381\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\n\u001b[1;32m 382\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mfunc\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m must return None or a tuple of (new_args, new_kwargs), but got \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mresult\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 383\u001b[0m )\n\u001b[0;32m--> 385\u001b[0m out \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 386\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_optimizer_step_code()\n\u001b[1;32m 388\u001b[0m \u001b[38;5;66;03m# call optimizer step post hooks\u001b[39;00m\n",
"File \u001b[0;32m~/env/venv/lib/python3.10/site-packages/torch/optim/optimizer.py:76\u001b[0m, in \u001b[0;36m_use_grad_for_differentiable.<locals>._use_grad\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 74\u001b[0m torch\u001b[38;5;241m.\u001b[39mset_grad_enabled(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdefaults[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdifferentiable\u001b[39m\u001b[38;5;124m'\u001b[39m])\n\u001b[1;32m 75\u001b[0m torch\u001b[38;5;241m.\u001b[39m_dynamo\u001b[38;5;241m.\u001b[39mgraph_break()\n\u001b[0;32m---> 76\u001b[0m ret \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 77\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m 78\u001b[0m torch\u001b[38;5;241m.\u001b[39m_dynamo\u001b[38;5;241m.\u001b[39mgraph_break()\n",
"File \u001b[0;32m~/env/venv/lib/python3.10/site-packages/torch/optim/adamw.py:187\u001b[0m, in \u001b[0;36mAdamW.step\u001b[0;34m(self, closure)\u001b[0m\n\u001b[1;32m 174\u001b[0m beta1, beta2 \u001b[38;5;241m=\u001b[39m group[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mbetas\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[1;32m 176\u001b[0m has_complex \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_init_group(\n\u001b[1;32m 177\u001b[0m group,\n\u001b[1;32m 178\u001b[0m params_with_grad,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 184\u001b[0m state_steps,\n\u001b[1;32m 185\u001b[0m )\n\u001b[0;32m--> 187\u001b[0m \u001b[43madamw\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 188\u001b[0m \u001b[43m \u001b[49m\u001b[43mparams_with_grad\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 189\u001b[0m \u001b[43m \u001b[49m\u001b[43mgrads\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 190\u001b[0m \u001b[43m \u001b[49m\u001b[43mexp_avgs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 191\u001b[0m \u001b[43m \u001b[49m\u001b[43mexp_avg_sqs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 192\u001b[0m \u001b[43m \u001b[49m\u001b[43mmax_exp_avg_sqs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 193\u001b[0m \u001b[43m \u001b[49m\u001b[43mstate_steps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 194\u001b[0m \u001b[43m \u001b[49m\u001b[43mamsgrad\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mamsgrad\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 195\u001b[0m \u001b[43m \u001b[49m\u001b[43mbeta1\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbeta1\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 196\u001b[0m \u001b[43m \u001b[49m\u001b[43mbeta2\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbeta2\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 197\u001b[0m \u001b[43m \u001b[49m\u001b[43mlr\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mlr\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 198\u001b[0m \u001b[43m \u001b[49m\u001b[43mweight_decay\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mweight_decay\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 199\u001b[0m \u001b[43m \u001b[49m\u001b[43meps\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43meps\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 200\u001b[0m \u001b[43m \u001b[49m\u001b[43mmaximize\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmaximize\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 201\u001b[0m \u001b[43m \u001b[49m\u001b[43mforeach\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mforeach\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 202\u001b[0m \u001b[43m \u001b[49m\u001b[43mcapturable\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcapturable\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 203\u001b[0m \u001b[43m \u001b[49m\u001b[43mdifferentiable\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mdifferentiable\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 204\u001b[0m \u001b[43m \u001b[49m\u001b[43mfused\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfused\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 205\u001b[0m \u001b[43m \u001b[49m\u001b[43mgrad_scale\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mgetattr\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mgrad_scale\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 206\u001b[0m \u001b[43m \u001b[49m\u001b[43mfound_inf\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mgetattr\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfound_inf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 207\u001b[0m \u001b[43m \u001b[49m\u001b[43mhas_complex\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mhas_complex\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 208\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 210\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m loss\n",
"File \u001b[0;32m~/env/venv/lib/python3.10/site-packages/torch/optim/adamw.py:339\u001b[0m, in \u001b[0;36madamw\u001b[0;34m(params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, foreach, capturable, differentiable, fused, grad_scale, found_inf, has_complex, amsgrad, beta1, beta2, lr, weight_decay, eps, maximize)\u001b[0m\n\u001b[1;32m 336\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 337\u001b[0m func \u001b[38;5;241m=\u001b[39m _single_tensor_adamw\n\u001b[0;32m--> 339\u001b[0m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 340\u001b[0m \u001b[43m \u001b[49m\u001b[43mparams\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 341\u001b[0m \u001b[43m \u001b[49m\u001b[43mgrads\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 342\u001b[0m \u001b[43m \u001b[49m\u001b[43mexp_avgs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 343\u001b[0m \u001b[43m \u001b[49m\u001b[43mexp_avg_sqs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 344\u001b[0m \u001b[43m \u001b[49m\u001b[43mmax_exp_avg_sqs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 345\u001b[0m \u001b[43m \u001b[49m\u001b[43mstate_steps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 346\u001b[0m \u001b[43m \u001b[49m\u001b[43mamsgrad\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mamsgrad\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 347\u001b[0m \u001b[43m \u001b[49m\u001b[43mbeta1\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbeta1\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 348\u001b[0m \u001b[43m \u001b[49m\u001b[43mbeta2\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbeta2\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 349\u001b[0m \u001b[43m \u001b[49m\u001b[43mlr\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlr\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 350\u001b[0m \u001b[43m \u001b[49m\u001b[43mweight_decay\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mweight_decay\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 351\u001b[0m \u001b[43m \u001b[49m\u001b[43meps\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43meps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 352\u001b[0m \u001b[43m \u001b[49m\u001b[43mmaximize\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmaximize\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 353\u001b[0m \u001b[43m \u001b[49m\u001b[43mcapturable\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcapturable\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 354\u001b[0m \u001b[43m \u001b[49m\u001b[43mdifferentiable\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdifferentiable\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 355\u001b[0m \u001b[43m \u001b[49m\u001b[43mgrad_scale\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgrad_scale\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 356\u001b[0m \u001b[43m \u001b[49m\u001b[43mfound_inf\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfound_inf\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 357\u001b[0m \u001b[43m \u001b[49m\u001b[43mhas_complex\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mhas_complex\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 358\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/env/venv/lib/python3.10/site-packages/torch/optim/adamw.py:552\u001b[0m, in \u001b[0;36m_multi_tensor_adamw\u001b[0;34m(params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, grad_scale, found_inf, amsgrad, beta1, beta2, lr, weight_decay, eps, maximize, capturable, differentiable, has_complex)\u001b[0m\n\u001b[1;32m 549\u001b[0m torch\u001b[38;5;241m.\u001b[39m_foreach_lerp_(device_exp_avgs, device_grads, \u001b[38;5;241m1\u001b[39m \u001b[38;5;241m-\u001b[39m beta1)\n\u001b[1;32m 551\u001b[0m torch\u001b[38;5;241m.\u001b[39m_foreach_mul_(device_exp_avg_sqs, beta2)\n\u001b[0;32m--> 552\u001b[0m \u001b[43mtorch\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_foreach_addcmul_\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdevice_exp_avg_sqs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdevice_grads\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdevice_grads\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mbeta2\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 554\u001b[0m \u001b[38;5;66;03m# Delete the local intermediate since it won't be used anymore to save on peak memory\u001b[39;00m\n\u001b[1;32m 555\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m device_grads\n",
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
]
}
],
"source": [
"optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5)\n",
"model.to(device)\n",
"model.train()\n",
"for epoch in range(5):\n",
" print(\"Epoch:\", epoch)\n",
" total_loss = 0.0\n",
" total_correct = 0\n",
" total_examples = 0\n",
"\n",
" for idx, batch in enumerate(train_loader):\n",
" input_ids = batch.pop(\"input_ids\").to(device)\n",
" pixel_values = batch.pop(\"pixel_values\").to(device)\n",
" labels = input_ids\n",
"\n",
" outputs = model(input_ids=input_ids, pixel_values=pixel_values, labels=labels)\n",
" loss = outputs.loss\n",
" total_loss += loss.item()\n",
"\n",
" predictions = torch.argmax(outputs.logits, dim=-1)\n",
" correct = (predictions == labels).sum().item()\n",
" total_correct += correct\n",
" total_examples += labels.numel()\n",
"\n",
" loss.backward()\n",
" optimizer.step()\n",
" optimizer.zero_grad()\n",
"\n",
" average_loss = total_loss / len(train_loader)\n",
" accuracy = total_correct / total_examples\n",
" print(f\"Average Loss for epoch {epoch}: {average_loss:.4f}\")\n",
" print(f\"Accuracy for epoch {epoch}: {accuracy:.2f}\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Dc4j-hLrgE6r"
},
"source": [
"### Test loop"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "sMEMW6MiO0sS"
},
"outputs": [],
"source": [
"model.eval()\n",
"with torch.no_grad():\n",
" total_loss = 0.0\n",
" total_correct = 0\n",
" total_examples = 0\n",
"\n",
" for idx, batch in enumerate(test_loader):\n",
" input_ids = batch.pop(\"input_ids\").to(device)\n",
" pixel_values = batch.pop(\"pixel_values\").to(device)\n",
" labels = input_ids\n",
"\n",
" outputs = model(input_ids=input_ids, pixel_values=pixel_values, labels=labels)\n",
" loss = outputs.loss\n",
" total_loss += loss.item()\n",
"\n",
" predictions = torch.argmax(outputs.logits, dim=-1)\n",
" correct = (predictions == labels).sum().item()\n",
" total_correct += correct\n",
" total_examples += labels.numel()\n",
"\n",
" average_loss = total_loss / len(test_loader)\n",
" accuracy = total_correct / total_examples\n",
" print(f\"Test Average Loss: {average_loss:.4f}\")\n",
" print(f\"Test Accuracy: {accuracy:.2f}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "qcKs5-3Jgz-M"
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ObYnoCzag0Aq"
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "rY6u33avg0CM"
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "8EZkrYFqg0E2"
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"id": "qBmjfndHgzFj"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: huggingface_hub in /home/cassandra@myliser.lu/env/venv/lib/python3.10/site-packages (0.22.2)\n",
"Requirement already satisfied: tqdm>=4.42.1 in /home/cassandra@myliser.lu/env/venv/lib/python3.10/site-packages (from huggingface_hub) (4.66.2)\n",
"Requirement already satisfied: requests in /home/cassandra@myliser.lu/env/venv/lib/python3.10/site-packages (from huggingface_hub) (2.31.0)\n",
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /home/cassandra@myliser.lu/env/venv/lib/python3.10/site-packages (from huggingface_hub) (4.11.0)\n",
"Requirement already satisfied: filelock in /home/cassandra@myliser.lu/env/venv/lib/python3.10/site-packages (from huggingface_hub) (3.13.4)\n",
"Requirement already satisfied: fsspec>=2023.5.0 in /home/cassandra@myliser.lu/env/venv/lib/python3.10/site-packages (from huggingface_hub) (2024.3.1)\n",
"Requirement already satisfied: pyyaml>=5.1 in /home/cassandra@myliser.lu/env/venv/lib/python3.10/site-packages (from huggingface_hub) (6.0.1)\n",
"Requirement already satisfied: packaging>=20.9 in /home/cassandra@myliser.lu/env/venv/lib/python3.10/site-packages (from huggingface_hub) (24.0)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /home/cassandra@myliser.lu/env/venv/lib/python3.10/site-packages (from requests->huggingface_hub) (2024.2.2)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /home/cassandra@myliser.lu/env/venv/lib/python3.10/site-packages (from requests->huggingface_hub) (2.2.1)\n",
"Requirement already satisfied: idna<4,>=2.5 in /home/cassandra@myliser.lu/env/venv/lib/python3.10/site-packages (from requests->huggingface_hub) (3.7)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /home/cassandra@myliser.lu/env/venv/lib/python3.10/site-packages (from requests->huggingface_hub) (3.3.2)\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"pip install huggingface_hub"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ISBzxw0Igout"
},
"source": [
"### Gradio webapp"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 337
},
"id": "tHSnxN7AZw8a",
"outputId": "8fc49c5d-de24-4a57-e86d-2e63010b382d"
},
"outputs": [
{
"ename": "ModuleNotFoundError",
"errorDetails": {
"actions": [
{
"action": "open_url",
"actionText": "Open Examples",
"url": "/notebooks/snippets/importing_libraries.ipynb"
}
]
},
"evalue": "No module named 'gradio'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-38-c71c84f2e5e0>\u001b[0m in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mgradio\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mgr\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mgradio\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcomponents\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mLabel\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'gradio'",
"",
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0;32m\nNOTE: If your import is failing due to a missing package, you can\nmanually install dependencies using either !pip or !apt.\n\nTo view examples of installing some common dependencies, click the\n\"Open Examples\" button below.\n\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n"
]
}
],
"source": [
"import gradio as gr\n",
"from gradio.components import Label"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "eNDHwvGEad6n"
},
"outputs": [],
"source": [
"model.eval() # Mettez votre modèle en mode évaluation\n",
"\n",
"# Fonction d'inférence pour Gradio\n",
"def predict(image):\n",
" processor = AutoProcessor.from_pretrained(\"Salesforce/blip-image-captioning-base\")\n",
" inputs = processor(images=image, return_tensors=\"pt\").to(device)\n",
" pixel_values = inputs.pixel_values\n",
"\n",
" generated_ids = model.generate(pixel_values=pixel_values, max_length=50)\n",
" generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]\n",
"\n",
"# Création de l'interface Gradio\n",
"iface = gr.Interface(fn=predict,\n",
" inputs=gr.components.Textbox(placeholder=\"Enter your text here...\"),\n",
" outputs=gr.components.Label(num_top_classes=2))\n",
"iface.launch(share=True)"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "T4",
"provenance": []
},
"kernelspec": {
"display_name": "venv",
"language": "python",
"name": "venv"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|