File size: 28,841 Bytes
73ab90f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "p5S2GYrJe6lb"
   },
   "source": [
    "# Image to text for Airbnb images"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "id": "lG3i-iiWe7l_"
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/cassandra@myliser.lu/env/venv/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n"
     ]
    }
   ],
   "source": [
    "import torch\n",
    "import torch\n",
    "from torch.utils.data import Dataset\n",
    "from PIL import Image\n",
    "import pandas as pd\n",
    "from transformers import AutoProcessor\n",
    "import numpy as np\n",
    "from torchvision import transforms\n",
    "from transformers import BlipForConditionalGeneration\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "FpRt69nWfFFv"
   },
   "source": [
    "### Create dataset with images and text and process them with BLIP's processor"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "id": "1i4BMba0ln91"
   },
   "outputs": [],
   "source": [
    "class Airbnb(Dataset):\n",
    "    def __init__(self, csv_file, data_augmentation):\n",
    "        self.df = pd.read_csv(csv_file)\n",
    "        self.processor = AutoProcessor.from_pretrained(\"Salesforce/blip-image-captioning-base\")\n",
    "    def __len__(self):\n",
    "        return self.df.shape[0]\n",
    "\n",
    "    def __getitem__(self, index):\n",
    "        path_to_im = \"/home/cassandra@myliser.lu/image_to_text/blip/living_room/\" + str(self.df.listing_id_x[index])+ '_' + str(self.df.photo_number_x[index])\n",
    "        image = Image.open(path_to_im).convert(\"RGB\")\n",
    "        label = str(self.df.answers[index])\n",
    "        encoding = self.processor(images=image, text=label, padding=\"max_length\", return_tensors=\"pt\")\n",
    "        encoding = {k:v.squeeze() for k,v in encoding.items()}\n",
    "        return encoding"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "e2sr84dsfXt7"
   },
   "source": [
    "### Import CSV file"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "id": "Zl0asqIYpp4-"
   },
   "outputs": [],
   "source": [
    "csv_file = \"/home/cassandra@myliser.lu/image_to_text/blip/Picture_Descriptions_All-Copy.csv\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "id": "8uUjuOj-qGsv"
   },
   "outputs": [],
   "source": [
    "dataset = Airbnb(csv_file, data_augmentation = None)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "0IK-kRFxfd3H"
   },
   "source": [
    "### Split train/test dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "id": "93wmNMwgqwgg"
   },
   "outputs": [],
   "source": [
    "train_size = int(0.8 * len(dataset))\n",
    "test_size = len(dataset) - train_size\n",
    "train_dataset, test_dataset = torch.utils.data.random_split(dataset, [train_size, test_size])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "3VWdqSeWfhAN"
   },
   "source": [
    "### Create dataloader"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "id": "0pJdUuSTqy-5"
   },
   "outputs": [],
   "source": [
    "train_loader = torch.utils.data.DataLoader(\n",
    "        train_dataset,\n",
    "        batch_size=1,\n",
    "        shuffle=True\n",
    "    )\n",
    "test_loader = torch.utils.data.DataLoader(\n",
    "        test_dataset,\n",
    "        batch_size=1,\n",
    "        shuffle=True\n",
    "    )"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "mnwwxvB_fjlx"
   },
   "source": [
    "### Import model and create device"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "id": "jY6h9kpgq0KX"
   },
   "outputs": [],
   "source": [
    "model = BlipForConditionalGeneration.from_pretrained(\"Salesforce/blip-image-captioning-base\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "id": "9rk60pCKfUkV"
   },
   "outputs": [],
   "source": [
    "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "HbiDQqzngCbn"
   },
   "source": [
    "### Train loop"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "i39jlG5Aq1Yo",
    "outputId": "a5292b17-f2b9-4a38-db0a-3f97d4923aa4"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch: 0\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "We strongly recommend passing in an `attention_mask` since your input_ids may be padded. See https://huggingface.co/docs/transformers/troubleshooting#incorrect-output-when-padding-tokens-arent-masked.\n"
     ]
    },
    {
     "ename": "KeyboardInterrupt",
     "evalue": "",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[9], line 25\u001b[0m\n\u001b[1;32m     22\u001b[0m     total_examples \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m labels\u001b[38;5;241m.\u001b[39mnumel()\n\u001b[1;32m     24\u001b[0m     loss\u001b[38;5;241m.\u001b[39mbackward()\n\u001b[0;32m---> 25\u001b[0m     \u001b[43moptimizer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstep\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m     26\u001b[0m     optimizer\u001b[38;5;241m.\u001b[39mzero_grad()\n\u001b[1;32m     28\u001b[0m average_loss \u001b[38;5;241m=\u001b[39m total_loss \u001b[38;5;241m/\u001b[39m \u001b[38;5;28mlen\u001b[39m(train_loader)\n",
      "File \u001b[0;32m~/env/venv/lib/python3.10/site-packages/torch/optim/optimizer.py:385\u001b[0m, in \u001b[0;36mOptimizer.profile_hook_step.<locals>.wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m    380\u001b[0m         \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m    381\u001b[0m             \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\n\u001b[1;32m    382\u001b[0m                 \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mfunc\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m must return None or a tuple of (new_args, new_kwargs), but got \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mresult\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m    383\u001b[0m             )\n\u001b[0;32m--> 385\u001b[0m out \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    386\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_optimizer_step_code()\n\u001b[1;32m    388\u001b[0m \u001b[38;5;66;03m# call optimizer step post hooks\u001b[39;00m\n",
      "File \u001b[0;32m~/env/venv/lib/python3.10/site-packages/torch/optim/optimizer.py:76\u001b[0m, in \u001b[0;36m_use_grad_for_differentiable.<locals>._use_grad\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m     74\u001b[0m     torch\u001b[38;5;241m.\u001b[39mset_grad_enabled(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdefaults[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdifferentiable\u001b[39m\u001b[38;5;124m'\u001b[39m])\n\u001b[1;32m     75\u001b[0m     torch\u001b[38;5;241m.\u001b[39m_dynamo\u001b[38;5;241m.\u001b[39mgraph_break()\n\u001b[0;32m---> 76\u001b[0m     ret \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m     77\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m     78\u001b[0m     torch\u001b[38;5;241m.\u001b[39m_dynamo\u001b[38;5;241m.\u001b[39mgraph_break()\n",
      "File \u001b[0;32m~/env/venv/lib/python3.10/site-packages/torch/optim/adamw.py:187\u001b[0m, in \u001b[0;36mAdamW.step\u001b[0;34m(self, closure)\u001b[0m\n\u001b[1;32m    174\u001b[0m     beta1, beta2 \u001b[38;5;241m=\u001b[39m group[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mbetas\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[1;32m    176\u001b[0m     has_complex \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_init_group(\n\u001b[1;32m    177\u001b[0m         group,\n\u001b[1;32m    178\u001b[0m         params_with_grad,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    184\u001b[0m         state_steps,\n\u001b[1;32m    185\u001b[0m     )\n\u001b[0;32m--> 187\u001b[0m     \u001b[43madamw\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    188\u001b[0m \u001b[43m        \u001b[49m\u001b[43mparams_with_grad\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    189\u001b[0m \u001b[43m        \u001b[49m\u001b[43mgrads\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    190\u001b[0m \u001b[43m        \u001b[49m\u001b[43mexp_avgs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    191\u001b[0m \u001b[43m        \u001b[49m\u001b[43mexp_avg_sqs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    192\u001b[0m \u001b[43m        \u001b[49m\u001b[43mmax_exp_avg_sqs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    193\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstate_steps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    194\u001b[0m \u001b[43m        \u001b[49m\u001b[43mamsgrad\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mamsgrad\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    195\u001b[0m \u001b[43m        \u001b[49m\u001b[43mbeta1\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbeta1\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    196\u001b[0m \u001b[43m        \u001b[49m\u001b[43mbeta2\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbeta2\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    197\u001b[0m \u001b[43m        \u001b[49m\u001b[43mlr\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mlr\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    198\u001b[0m \u001b[43m        \u001b[49m\u001b[43mweight_decay\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mweight_decay\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    199\u001b[0m \u001b[43m        \u001b[49m\u001b[43meps\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43meps\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    200\u001b[0m \u001b[43m        \u001b[49m\u001b[43mmaximize\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmaximize\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    201\u001b[0m \u001b[43m        \u001b[49m\u001b[43mforeach\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mforeach\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    202\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcapturable\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcapturable\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    203\u001b[0m \u001b[43m        \u001b[49m\u001b[43mdifferentiable\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mdifferentiable\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    204\u001b[0m \u001b[43m        \u001b[49m\u001b[43mfused\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfused\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    205\u001b[0m \u001b[43m        \u001b[49m\u001b[43mgrad_scale\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mgetattr\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mgrad_scale\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    206\u001b[0m \u001b[43m        \u001b[49m\u001b[43mfound_inf\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mgetattr\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfound_inf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    207\u001b[0m \u001b[43m        \u001b[49m\u001b[43mhas_complex\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mhas_complex\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    208\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    210\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m loss\n",
      "File \u001b[0;32m~/env/venv/lib/python3.10/site-packages/torch/optim/adamw.py:339\u001b[0m, in \u001b[0;36madamw\u001b[0;34m(params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, foreach, capturable, differentiable, fused, grad_scale, found_inf, has_complex, amsgrad, beta1, beta2, lr, weight_decay, eps, maximize)\u001b[0m\n\u001b[1;32m    336\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m    337\u001b[0m     func \u001b[38;5;241m=\u001b[39m _single_tensor_adamw\n\u001b[0;32m--> 339\u001b[0m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    340\u001b[0m \u001b[43m    \u001b[49m\u001b[43mparams\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    341\u001b[0m \u001b[43m    \u001b[49m\u001b[43mgrads\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    342\u001b[0m \u001b[43m    \u001b[49m\u001b[43mexp_avgs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    343\u001b[0m \u001b[43m    \u001b[49m\u001b[43mexp_avg_sqs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    344\u001b[0m \u001b[43m    \u001b[49m\u001b[43mmax_exp_avg_sqs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    345\u001b[0m \u001b[43m    \u001b[49m\u001b[43mstate_steps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    346\u001b[0m \u001b[43m    \u001b[49m\u001b[43mamsgrad\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mamsgrad\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    347\u001b[0m \u001b[43m    \u001b[49m\u001b[43mbeta1\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbeta1\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    348\u001b[0m \u001b[43m    \u001b[49m\u001b[43mbeta2\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbeta2\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    349\u001b[0m \u001b[43m    \u001b[49m\u001b[43mlr\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlr\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    350\u001b[0m \u001b[43m    \u001b[49m\u001b[43mweight_decay\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mweight_decay\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    351\u001b[0m \u001b[43m    \u001b[49m\u001b[43meps\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43meps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    352\u001b[0m \u001b[43m    \u001b[49m\u001b[43mmaximize\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmaximize\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    353\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcapturable\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcapturable\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    354\u001b[0m \u001b[43m    \u001b[49m\u001b[43mdifferentiable\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdifferentiable\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    355\u001b[0m \u001b[43m    \u001b[49m\u001b[43mgrad_scale\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgrad_scale\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    356\u001b[0m \u001b[43m    \u001b[49m\u001b[43mfound_inf\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfound_inf\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    357\u001b[0m \u001b[43m    \u001b[49m\u001b[43mhas_complex\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mhas_complex\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    358\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/env/venv/lib/python3.10/site-packages/torch/optim/adamw.py:552\u001b[0m, in \u001b[0;36m_multi_tensor_adamw\u001b[0;34m(params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, grad_scale, found_inf, amsgrad, beta1, beta2, lr, weight_decay, eps, maximize, capturable, differentiable, has_complex)\u001b[0m\n\u001b[1;32m    549\u001b[0m torch\u001b[38;5;241m.\u001b[39m_foreach_lerp_(device_exp_avgs, device_grads, \u001b[38;5;241m1\u001b[39m \u001b[38;5;241m-\u001b[39m beta1)\n\u001b[1;32m    551\u001b[0m torch\u001b[38;5;241m.\u001b[39m_foreach_mul_(device_exp_avg_sqs, beta2)\n\u001b[0;32m--> 552\u001b[0m \u001b[43mtorch\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_foreach_addcmul_\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdevice_exp_avg_sqs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdevice_grads\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdevice_grads\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mbeta2\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    554\u001b[0m \u001b[38;5;66;03m# Delete the local intermediate since it won't be used anymore to save on peak memory\u001b[39;00m\n\u001b[1;32m    555\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m device_grads\n",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
     ]
    }
   ],
   "source": [
    "optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5)\n",
    "model.to(device)\n",
    "model.train()\n",
    "for epoch in range(5):\n",
    "    print(\"Epoch:\", epoch)\n",
    "    total_loss = 0.0\n",
    "    total_correct = 0\n",
    "    total_examples = 0\n",
    "\n",
    "    for idx, batch in enumerate(train_loader):\n",
    "        input_ids = batch.pop(\"input_ids\").to(device)\n",
    "        pixel_values = batch.pop(\"pixel_values\").to(device)\n",
    "        labels = input_ids\n",
    "\n",
    "        outputs = model(input_ids=input_ids, pixel_values=pixel_values, labels=labels)\n",
    "        loss = outputs.loss\n",
    "        total_loss += loss.item()\n",
    "\n",
    "        predictions = torch.argmax(outputs.logits, dim=-1)\n",
    "        correct = (predictions == labels).sum().item()\n",
    "        total_correct += correct\n",
    "        total_examples += labels.numel()\n",
    "\n",
    "        loss.backward()\n",
    "        optimizer.step()\n",
    "        optimizer.zero_grad()\n",
    "\n",
    "    average_loss = total_loss / len(train_loader)\n",
    "    accuracy = total_correct / total_examples\n",
    "    print(f\"Average Loss for epoch {epoch}: {average_loss:.4f}\")\n",
    "    print(f\"Accuracy for epoch {epoch}: {accuracy:.2f}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "Dc4j-hLrgE6r"
   },
   "source": [
    "### Test loop"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "sMEMW6MiO0sS"
   },
   "outputs": [],
   "source": [
    "model.eval()\n",
    "with torch.no_grad():\n",
    "    total_loss = 0.0\n",
    "    total_correct = 0\n",
    "    total_examples = 0\n",
    "\n",
    "    for idx, batch in enumerate(test_loader):\n",
    "        input_ids = batch.pop(\"input_ids\").to(device)\n",
    "        pixel_values = batch.pop(\"pixel_values\").to(device)\n",
    "        labels = input_ids\n",
    "\n",
    "        outputs = model(input_ids=input_ids, pixel_values=pixel_values, labels=labels)\n",
    "        loss = outputs.loss\n",
    "        total_loss += loss.item()\n",
    "\n",
    "        predictions = torch.argmax(outputs.logits, dim=-1)\n",
    "        correct = (predictions == labels).sum().item()\n",
    "        total_correct += correct\n",
    "        total_examples += labels.numel()\n",
    "\n",
    "    average_loss = total_loss / len(test_loader)\n",
    "    accuracy = total_correct / total_examples\n",
    "    print(f\"Test Average Loss: {average_loss:.4f}\")\n",
    "    print(f\"Test Accuracy: {accuracy:.2f}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "qcKs5-3Jgz-M"
   },
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "ObYnoCzag0Aq"
   },
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "rY6u33avg0CM"
   },
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "8EZkrYFqg0E2"
   },
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "id": "qBmjfndHgzFj"
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
      "To disable this warning, you can either:\n",
      "\t- Avoid using `tokenizers` before the fork if possible\n",
      "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Requirement already satisfied: huggingface_hub in /home/cassandra@myliser.lu/env/venv/lib/python3.10/site-packages (0.22.2)\n",
      "Requirement already satisfied: tqdm>=4.42.1 in /home/cassandra@myliser.lu/env/venv/lib/python3.10/site-packages (from huggingface_hub) (4.66.2)\n",
      "Requirement already satisfied: requests in /home/cassandra@myliser.lu/env/venv/lib/python3.10/site-packages (from huggingface_hub) (2.31.0)\n",
      "Requirement already satisfied: typing-extensions>=3.7.4.3 in /home/cassandra@myliser.lu/env/venv/lib/python3.10/site-packages (from huggingface_hub) (4.11.0)\n",
      "Requirement already satisfied: filelock in /home/cassandra@myliser.lu/env/venv/lib/python3.10/site-packages (from huggingface_hub) (3.13.4)\n",
      "Requirement already satisfied: fsspec>=2023.5.0 in /home/cassandra@myliser.lu/env/venv/lib/python3.10/site-packages (from huggingface_hub) (2024.3.1)\n",
      "Requirement already satisfied: pyyaml>=5.1 in /home/cassandra@myliser.lu/env/venv/lib/python3.10/site-packages (from huggingface_hub) (6.0.1)\n",
      "Requirement already satisfied: packaging>=20.9 in /home/cassandra@myliser.lu/env/venv/lib/python3.10/site-packages (from huggingface_hub) (24.0)\n",
      "Requirement already satisfied: certifi>=2017.4.17 in /home/cassandra@myliser.lu/env/venv/lib/python3.10/site-packages (from requests->huggingface_hub) (2024.2.2)\n",
      "Requirement already satisfied: urllib3<3,>=1.21.1 in /home/cassandra@myliser.lu/env/venv/lib/python3.10/site-packages (from requests->huggingface_hub) (2.2.1)\n",
      "Requirement already satisfied: idna<4,>=2.5 in /home/cassandra@myliser.lu/env/venv/lib/python3.10/site-packages (from requests->huggingface_hub) (3.7)\n",
      "Requirement already satisfied: charset-normalizer<4,>=2 in /home/cassandra@myliser.lu/env/venv/lib/python3.10/site-packages (from requests->huggingface_hub) (3.3.2)\n",
      "Note: you may need to restart the kernel to use updated packages.\n"
     ]
    }
   ],
   "source": [
    "pip install huggingface_hub"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "ISBzxw0Igout"
   },
   "source": [
    "### Gradio webapp"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 337
    },
    "id": "tHSnxN7AZw8a",
    "outputId": "8fc49c5d-de24-4a57-e86d-2e63010b382d"
   },
   "outputs": [
    {
     "ename": "ModuleNotFoundError",
     "errorDetails": {
      "actions": [
       {
        "action": "open_url",
        "actionText": "Open Examples",
        "url": "/notebooks/snippets/importing_libraries.ipynb"
       }
      ]
     },
     "evalue": "No module named 'gradio'",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mModuleNotFoundError\u001b[0m                       Traceback (most recent call last)",
      "\u001b[0;32m<ipython-input-38-c71c84f2e5e0>\u001b[0m in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mgradio\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mgr\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      2\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mgradio\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcomponents\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mLabel\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'gradio'",
      "",
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0;32m\nNOTE: If your import is failing due to a missing package, you can\nmanually install dependencies using either !pip or !apt.\n\nTo view examples of installing some common dependencies, click the\n\"Open Examples\" button below.\n\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n"
     ]
    }
   ],
   "source": [
    "import gradio as gr\n",
    "from gradio.components import Label"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "eNDHwvGEad6n"
   },
   "outputs": [],
   "source": [
    "model.eval()  # Mettez votre modèle en mode évaluation\n",
    "\n",
    "# Fonction d'inférence pour Gradio\n",
    "def predict(image):\n",
    "  processor = AutoProcessor.from_pretrained(\"Salesforce/blip-image-captioning-base\")\n",
    "  inputs = processor(images=image, return_tensors=\"pt\").to(device)\n",
    "  pixel_values = inputs.pixel_values\n",
    "\n",
    "  generated_ids = model.generate(pixel_values=pixel_values, max_length=50)\n",
    "  generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]\n",
    "\n",
    "# Création de l'interface Gradio\n",
    "iface = gr.Interface(fn=predict,\n",
    "                     inputs=gr.components.Textbox(placeholder=\"Enter your text here...\"),\n",
    "                     outputs=gr.components.Label(num_top_classes=2))\n",
    "iface.launch(share=True)"
   ]
  }
 ],
 "metadata": {
  "accelerator": "GPU",
  "colab": {
   "gpuType": "T4",
   "provenance": []
  },
  "kernelspec": {
   "display_name": "venv",
   "language": "python",
   "name": "venv"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}