metadata
base_model: indobenchmark/indobert-base-p2
datasets:
- afaji/indonli
language:
- id
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6915
- loss:SoftmaxLoss
widget:
- source_sentence: >-
Pesta Olahraga Asia Tenggara atau Southeast Asian Games, biasa disingkat
SEA Games, adalah ajang olahraga yang diadakan setiap dua tahun dan
melibatkan 11 negara Asia Tenggara.
sentences:
- Sekarang tahun 2017.
- >-
Warna kulit tidak mempengaruhi waktu berjemur yang baik untuk
mengatifkan pro-vitamin D3.
- Pesta Olahraga Asia Tenggara diadakan setiap tahun.
- source_sentence: Menjalani aktivitas Ramadhan di tengah wabah Corona tentunya tidak mudah.
sentences:
- Tidak ada observasi yang pernah dilansir oleh Business Insider.
- Wabah Corona membuat aktivitas Ramadhan tidak mudah dijalani.
- Piala Sudirman pertama digelar pada tahun 1989.
- source_sentence: >-
Dalam bidang politik, partai ini memperjuangkan agar kekuasaan sepenuhnya
berada di tangan rakyat.
sentences:
- Galileo tidak berhasil mengetes hasil dari Hukum Inert.
- Kudeta 14 Februari 1946 gagal merebut kekuasaan Belanda.
- Partai ini berusaha agar kekuasaan sepenuhnya berada di tangan rakyat.
- source_sentence: >-
Keluarga mendiang Prince menuduh layanan musik streaming Tidal memasukkan
karya milik sang penyanyi legendaris tanpa izin .
sentences:
- Rosier adalah pelayan setia Lord Voldemort.
- Bangunan ini digunakan untuk penjualan.
- >-
Keluarga mendiang Prince sudah memberi izin kepada TImbal untuk
menggunakan lagu milik Prince.
- source_sentence: >-
Tujuan dari acara dengar pendapat CRTC adalah untuk mengumpulkan respons
dari pada pemangku kepentingan industri ini dan dari masyarakat umum.
sentences:
- Pembuat Rooms hanya bisa membuat meeting yang terbuka.
- >-
Masyarakat umum dilibatkan untuk memberikan respon dalam acara dengar
pendapat CRTC.
- Eminem dirasa tidak akan memulai kembali kariernya tahun ini.
model-index:
- name: SentenceTransformer based on indobenchmark/indobert-base-p2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.596170613538296
name: Pearson Cosine
- type: spearman_cosine
value: 0.5861883707539226
name: Spearman Cosine
- type: pearson_manhattan
value: 0.5845731839861422
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.5782563614870986
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.5900038609486801
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.5795936352515776
name: Spearman Euclidean
- type: pearson_dot
value: 0.5995818925993402
name: Pearson Dot
- type: spearman_dot
value: 0.5930379614276564
name: Spearman Dot
- type: pearson_max
value: 0.5995818925993402
name: Pearson Max
- type: spearman_max
value: 0.5930379614276564
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.32544389544371366
name: Pearson Cosine
- type: spearman_cosine
value: 0.29994363722612716
name: Spearman Cosine
- type: pearson_manhattan
value: 0.2875495017479062
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.2810442265188576
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.29788552102363436
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.28248957351462056
name: Spearman Euclidean
- type: pearson_dot
value: 0.34645175745533086
name: Pearson Dot
- type: spearman_dot
value: 0.3331449893649715
name: Spearman Dot
- type: pearson_max
value: 0.34645175745533086
name: Pearson Max
- type: spearman_max
value: 0.3331449893649715
name: Spearman Max
SentenceTransformer based on indobenchmark/indobert-base-p2
This is a sentence-transformers model finetuned from indobenchmark/indobert-base-p2 on the afaji/indonli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: indobenchmark/indobert-base-p2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: id
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("cassador/4bs8lr2")
# Run inference
sentences = [
'Tujuan dari acara dengar pendapat CRTC adalah untuk mengumpulkan respons dari pada pemangku kepentingan industri ini dan dari masyarakat umum.',
'Masyarakat umum dilibatkan untuk memberikan respon dalam acara dengar pendapat CRTC.',
'Pembuat Rooms hanya bisa membuat meeting yang terbuka.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.5962 |
spearman_cosine | 0.5862 |
pearson_manhattan | 0.5846 |
spearman_manhattan | 0.5783 |
pearson_euclidean | 0.59 |
spearman_euclidean | 0.5796 |
pearson_dot | 0.5996 |
spearman_dot | 0.593 |
pearson_max | 0.5996 |
spearman_max | 0.593 |
Semantic Similarity
- Dataset:
sts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.3254 |
spearman_cosine | 0.2999 |
pearson_manhattan | 0.2875 |
spearman_manhattan | 0.281 |
pearson_euclidean | 0.2979 |
spearman_euclidean | 0.2825 |
pearson_dot | 0.3465 |
spearman_dot | 0.3331 |
pearson_max | 0.3465 |
spearman_max | 0.3331 |
Training Details
Training Dataset
afaji/indonli
- Dataset: afaji/indonli
- Size: 6,915 training samples
- Columns:
premise
,hypothesis
, andlabel
- Approximate statistics based on the first 1000 samples:
premise hypothesis label type string string int details - min: 12 tokens
- mean: 29.26 tokens
- max: 135 tokens
- min: 6 tokens
- mean: 12.13 tokens
- max: 36 tokens
- 0: ~51.00%
- 1: ~49.00%
- Samples:
premise hypothesis label Presiden Joko Widodo (Jokowi) menyampaikan prediksi bahwa wabah virus Corona (COVID-19) di Indonesia akan selesai akhir tahun ini.
Prediksi akhir wabah tidak disampaikan Jokowi.
0
Meski biasanya hanya digunakan di fasilitas kesehatan, saat ini masker dan sarung tangan sekali pakai banyak dipakai di tingkat rumah tangga.
Masker sekali pakai banyak dipakai di tingkat rumah tangga.
1
Seperti namanya, paket internet sahur Telkomsel ini ditujukan bagi pengguna yang menginginkan kuota ekstra, untuk menemani momen sahur sepanjang bulan puasa.
Paket internet sahur tidak ditujukan untuk saat sahur.
0
- Loss:
SoftmaxLoss
Evaluation Dataset
afaji/indonli
- Dataset: afaji/indonli
- Size: 1,556 evaluation samples
- Columns:
premise
,hypothesis
, andlabel
- Approximate statistics based on the first 1000 samples:
premise hypothesis label type string string int details - min: 9 tokens
- mean: 28.07 tokens
- max: 179 tokens
- min: 6 tokens
- mean: 12.15 tokens
- max: 25 tokens
- 0: ~47.90%
- 1: ~52.10%
- Samples:
premise hypothesis label Manuskrip tersebut berisi tiga catatan yang menceritakan bagaimana peristiwa jatuhnya meteorit serta laporan kematian akibat kejadian tersebut seperti dilansir dari Science Alert, Sabtu (25/4/2020).
Manuskrip tersebut tidak mencatat laporan kematian.
0
Dilansir dari Business Insider, menurut observasi dari Mauna Loa Observatory di Hawaii pada karbon dioksida (CO2) di level mencapai 410 ppm tidak langsung memberikan efek pada pernapasan, karena tubuh manusia juga masih membutuhkan CO2 dalam kadar tertentu.
Tidak ada observasi yang pernah dilansir oleh Business Insider.
0
Seorang wanita asal New York mengaku sangat benci air putih.
Tidak ada orang dari New York yang membenci air putih.
0
- Loss:
SoftmaxLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochlearning_rate
: 2e-05num_train_epochs
: 4warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
---|---|---|---|---|---|
0 | 0 | - | - | 0.1277 | - |
0.1156 | 100 | 0.6805 | - | - | - |
0.2312 | 200 | 0.5137 | - | - | - |
0.3468 | 300 | 0.5108 | - | - | - |
0.4624 | 400 | 0.5113 | - | - | - |
0.5780 | 500 | 0.5102 | - | - | - |
0.6936 | 600 | 0.5212 | - | - | - |
0.8092 | 700 | 0.5035 | - | - | - |
0.9249 | 800 | 0.472 | - | - | - |
1.0 | 865 | - | 0.4468 | 0.5249 | - |
1.0405 | 900 | 0.4193 | - | - | - |
1.1561 | 1000 | 0.3509 | - | - | - |
1.2717 | 1100 | 0.3709 | - | - | - |
1.3873 | 1200 | 0.3538 | - | - | - |
1.5029 | 1300 | 0.3619 | - | - | - |
1.6185 | 1400 | 0.388 | - | - | - |
1.7341 | 1500 | 0.3657 | - | - | - |
1.8497 | 1600 | 0.3577 | - | - | - |
1.9653 | 1700 | 0.4149 | - | - | - |
2.0 | 1730 | - | 0.4535 | 0.5503 | - |
2.0809 | 1800 | 0.3037 | - | - | - |
2.1965 | 1900 | 0.2213 | - | - | - |
2.3121 | 2000 | 0.2531 | - | - | - |
2.4277 | 2100 | 0.2281 | - | - | - |
2.5434 | 2200 | 0.2684 | - | - | - |
2.6590 | 2300 | 0.2154 | - | - | - |
2.7746 | 2400 | 0.2556 | - | - | - |
2.8902 | 2500 | 0.2515 | - | - | - |
3.0 | 2595 | - | 0.6295 | 0.5799 | - |
3.0058 | 2600 | 0.2158 | - | - | - |
3.1214 | 2700 | 0.1445 | - | - | - |
3.2370 | 2800 | 0.1191 | - | - | - |
3.3526 | 2900 | 0.1514 | - | - | - |
3.4682 | 3000 | 0.1223 | - | - | - |
3.5838 | 3100 | 0.1581 | - | - | - |
3.6994 | 3200 | 0.112 | - | - | - |
3.8150 | 3300 | 0.1396 | - | - | - |
3.9306 | 3400 | 0.1568 | - | - | - |
4.0 | 3460 | - | 0.8635 | 0.5862 | 0.2999 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers and SoftmaxLoss
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}