File size: 1,800 Bytes
f974486
 
 
 
 
 
0a21383
 
f974486
 
0a21383
 
 
 
 
 
 
 
 
 
 
 
f974486
 
 
 
 
 
 
 
0a21383
 
 
 
 
 
 
f974486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a21383
 
 
 
 
 
 
f974486
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- xlsum
metrics:
- rouge
model-index:
- name: t5-small-finetuned-xlsum
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: xlsum
      type: xlsum
      args: spanish
    metrics:
    - name: Rouge1
      type: rouge
      value: 15.4289
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-finetuned-xlsum

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xlsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6974
- Rouge1: 15.4289
- Rouge2: 3.146
- Rougel: 12.7682
- Rougelsum: 12.912
- Gen Len: 18.9889

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2 | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 2.9764        | 1.0   | 2382 | 2.6974          | 15.4289 | 3.146  | 12.7682 | 12.912    | 18.9889 |


### Framework versions

- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1