cartesinus's picture
Update README.md
f181731
|
raw
history blame
2.87 kB
metadata
license: mit
tags:
  - generated_from_trainer
  - nlu
  - intent-classification
metrics:
  - accuracy
  - f1
model-index:
  - name: multilingual_minilm-amazon-massive-intent
    results:
      - task:
          name: intent-classification
          type: intent-classification
        dataset:
          name: MASSIVE
          type: AmazonScience/massive
          split: test
        metrics:
          - name: F1
            type: f1
            value: 0.8234
datasets:
  - AmazonScience/massive
language:
  - en
pipeline_tag: text-classification

multilingual_minilm-amazon-massive-intent

This model is a fine-tuned version of microsoft/Multilingual-MiniLM-L12-H384 on the MASSIVE1.1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8941
  • Accuracy: 0.8234
  • F1: 0.8234

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
3.7961 1.0 720 3.1657 0.3404 0.3404
3.1859 2.0 1440 2.4835 0.4343 0.4343
2.3104 3.0 2160 2.0474 0.5652 0.5652
2.0071 4.0 2880 1.7190 0.6503 0.6503
1.5595 5.0 3600 1.4873 0.6990 0.6990
1.3664 6.0 4320 1.3088 0.7354 0.7354
1.1272 7.0 5040 1.1964 0.7521 0.7521
1.0128 8.0 5760 1.1115 0.7718 0.7718
0.9405 9.0 6480 1.0598 0.7841 0.7841
0.7758 10.0 7200 1.0003 0.7944 0.7944
0.7457 11.0 7920 0.9599 0.8037 0.8037
0.6605 12.0 8640 0.9175 0.8165 0.8165
0.6135 13.0 9360 0.9148 0.8190 0.8190
0.5698 14.0 10080 0.8976 0.8229 0.8229
0.5578 15.0 10800 0.8941 0.8234 0.8234

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Datasets 2.7.1
  • Tokenizers 0.13.2