File size: 2,424 Bytes
eb8f834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: mit
tags:
- generated_from_trainer
datasets:
- iva_mt_wslot
metrics:
- bleu
model-index:
- name: iva_mt_wslot-m2m100_418M-en-es-plaintext_10e
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: iva_mt_wslot
      type: iva_mt_wslot
      config: en-es
      split: validation
      args: en-es
    metrics:
    - name: Bleu
      type: bleu
      value: 51.1501
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# iva_mt_wslot-m2m100_418M-en-es-plaintext_10e

This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the iva_mt_wslot dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0116
- Bleu: 51.1501
- Gen Len: 12.6861

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Bleu    | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 0.012         | 1.0   | 2104  | 0.0109          | 47.9124 | 12.7523 |
| 0.0079        | 2.0   | 4208  | 0.0101          | 49.9897 | 12.6763 |
| 0.0059        | 3.0   | 6312  | 0.0101          | 50.5286 | 12.6435 |
| 0.0045        | 4.0   | 8416  | 0.0101          | 49.6821 | 12.5472 |
| 0.0033        | 5.0   | 10520 | 0.0104          | 50.3856 | 12.6638 |
| 0.0024        | 6.0   | 12624 | 0.0107          | 50.359  | 12.7418 |
| 0.0019        | 7.0   | 14728 | 0.0111          | 50.8234 | 12.709  |
| 0.0014        | 8.0   | 16832 | 0.0111          | 50.872  | 12.6671 |
| 0.0011        | 9.0   | 18936 | 0.0114          | 51.3014 | 12.6291 |
| 0.001         | 10.0  | 21040 | 0.0116          | 51.1501 | 12.6861 |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3