File size: 2,730 Bytes
67e7c0e 2b9a599 67e7c0e 6b435aa 67e7c0e 6b435aa 67e7c0e d35fefc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
base_model: xlm-roberta-base
model-index:
- name: fedcsis-intent_baseline-xlm_r-pl
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fedcsis-intent_baseline-xlm_r-pl
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the
[leyzer-fedcsis](https://huggingface.co/cartesinus/leyzer-fedcsis) dataset.
Results on test set:
- Accuracy: **0.959451**
It achieves the following results on the evaluation set:
- Loss: **0.1602**
- Accuracy: **0.9671**
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 3.4745 | 1.0 | 798 | 1.5821 | 0.6795 | 0.6795 |
| 1.1438 | 2.0 | 1596 | 0.8333 | 0.8259 | 0.8259 |
| 0.7546 | 3.0 | 2394 | 0.4991 | 0.9039 | 0.9039 |
| 0.3955 | 4.0 | 3192 | 0.3466 | 0.9302 | 0.9302 |
| 0.3016 | 5.0 | 3990 | 0.2571 | 0.9440 | 0.9440 |
| 0.183 | 6.0 | 4788 | 0.2147 | 0.9588 | 0.9588 |
| 0.1309 | 7.0 | 5586 | 0.1900 | 0.9605 | 0.9605 |
| 0.1128 | 8.0 | 6384 | 0.1750 | 0.9640 | 0.9640 |
| 0.0873 | 9.0 | 7182 | 0.1638 | 0.9663 | 0.9663 |
| 0.082 | 10.0 | 7980 | 0.1602 | 0.9671 | 0.9671 |
### Framework versions
- Transformers 4.27.0
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
## Citation
If you use this model, please cite the following:
```
@inproceedings{kubis2023caiccaic,
author={Marek Kubis and Paweł Skórzewski and Marcin Sowański and Tomasz Ziętkiewicz},
pages={1319–1324},
title={Center for Artificial Intelligence Challenge on Conversational AI Correctness},
booktitle={Proceedings of the 18th Conference on Computer Science and Intelligence Systems},
year={2023},
doi={10.15439/2023B6058},
url={http://dx.doi.org/10.15439/2023B6058},
volume={35},
series={Annals of Computer Science and Information Systems}
}
``` |