File size: 13,663 Bytes
40627af |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb51823c700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb51823c790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb51823c820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb51823c8b0>", "_build": "<function ActorCriticPolicy._build at 0x7fb51823c940>", "forward": "<function ActorCriticPolicy.forward at 0x7fb51823c9d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb51823ca60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb51823caf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb51823cb80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb51823cc10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb51823cca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb51823cd30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb53705f140>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1716782093032738685, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbKcDwUaKu61appPWyqIbNVUyw5zPsCswAAgD8AAIA/AMaNvcVBLD+9Zmi7NkZIv15nK74ozrs9AAAAAAAAAAAAoTC9s8mLPgCH4z3GzA6/s8myvZ3N6D0AAAAAAAAAAADBOj2Gb7g/NMEhPy3d4j3gGpq8cp4SPQAAAAAAAAAAkyQ7vg8fhj5z1s0+d68Hvz1DBL44Udg+AAAAAAAAAADmXyO+lruYP8rDCb/8IwC/FfyHvjbyzr4AAAAAAAAAADOTFzqPynK6bywUvmWOJ7Ne4vu6WicYMwAAgD8AAIA/s88jvj0iqj/izQO/MlMAv9vCmL5oA6C+AAAAAAAAAABm/Om9RdQfP0vI6j1mCT2/ZdNEvi0cJz4AAAAAAAAAAOa9y737EC8/yQKxvLRMKr9uq02+Rvx+PQAAAAAAAAAAmkyGvMMKCrwF8Kc+VybYvV9xWr195k6/AACAPwAAAADm5j29hQUkPwPD3jw+XD6/IT71vY0ApDwAAAAAAAAAAA0WTD49sbg+wI9gvUDgEb8HtYw+Pk14vQAAAAAAAAAAs5K5vfbEMrrCcWu1r6R5sKONTbv50qc0AACAPwAAgD99Bps+0vKWP6WsLj9CaE2/onrrPsFSOD4AAAAAAAAAAICTUz2w/LY/8F0MP7tlVLxh7ai8FdWIPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHQnPKEFnqWMAWyUTQEBjAF0lEdAvjtj3lCCz3V9lChoBkdAdBWw4KhL5GgHTQIBaAhHQL47YsGxD9h1fZQoaAZHQEZnd9Dx9XtoB0tcaAhHQL47a+VC5Vh1fZQoaAZHQHJ9ec6Nly1oB0uUaAhHQL47dqMWGh51fZQoaAZHQHObDnV5KOFoB0vsaAhHQL47ehFEy+J1fZQoaAZHQHLDIZdfLLZoB0vLaAhHQL47kJiy6c11fZQoaAZHQHLl27rcCYFoB0vIaAhHQL47qaCtihF1fZQoaAZHQHIowH/tICloB0uRaAhHQL47vt9QXRB1fZQoaAZHQHK8omG/N7loB0ukaAhHQL4707dznzR1fZQoaAZHQG+a0G/vfCRoB0uiaAhHQL473UlzEJl1fZQoaAZHQHOlMhPj4pNoB0uyaAhHQL477UYsNDt1fZQoaAZHQHAV499tuUFoB0uqaAhHQL5UMX2ugYh1fZQoaAZHQHL8lM/QjUxoB0vIaAhHQL5UQ14Pf9B1fZQoaAZHQHHIbGza9K5oB0vNaAhHQL5USxwAEMd1fZQoaAZHQHMWpG4I8hdoB0vYaAhHQL5UY6ZH/cZ1fZQoaAZHQHJlFaSs8xNoB0uvaAhHQL5UZF6Rhc91fZQoaAZHQHK1I3aSLZVoB0u6aAhHQL5Ue9kBjnV1fZQoaAZHQHDfN3OfNA1oB0u5aAhHQL5UhEuQIUt1fZQoaAZHQG/cpaA4GUxoB0ubaAhHQL5UhSmqHXV1fZQoaAZHQHPsUqDsdDJoB0vHaAhHQL5UjdeY2Kl1fZQoaAZHQHR7rDdgv11oB0u3aAhHQL5UjUTcqON1fZQoaAZHQHIo2SZBsyloB0ubaAhHQL5Un08/2TR1fZQoaAZHQHL2XKW9lEtoB0vRaAhHQL5Ur3JxNqR1fZQoaAZHQHD+d7ngYP5oB0uMaAhHQL5U7m1pj+d1fZQoaAZHQHOZdv863iJoB0vYaAhHQL5VAzBAOax1fZQoaAZHQHI1sa86FM9oB0vHaAhHQL5VAvv0AcV1fZQoaAZHQHEsjzAeq71oB0u0aAhHQL5VBXrdFfB1fZQoaAZHQHIfTzundftoB0vYaAhHQL5VIdyDIzZ1fZQoaAZHQHLsexbB42VoB0vBaAhHQL5VIL+glGB1fZQoaAZHQHHnstCiRGNoB0u6aAhHQL5VMea8Yht1fZQoaAZHQHFJVtbcGkhoB0uxaAhHQL5VQNWEK3N1fZQoaAZHQHQLbeANG3FoB0uzaAhHQL5VQ8s+V1R1fZQoaAZHQHOUAl8gIQhoB0uoaAhHQL5VXqSHM2Z1fZQoaAZHQHEZdipeeFtoB0uxaAhHQL5VYLbHp8p1fZQoaAZHQHAlkqc3EQ5oB0u/aAhHQL5Vep/PPcB1fZQoaAZHQHIkxddE9dNoB0vFaAhHQL5Vek+5e7d1fZQoaAZHQHM62wRoRI1oB0vYaAhHQL5ViJuEVWV1fZQoaAZHQHL72M85jpdoB0vGaAhHQL5Vlc+aBqd1fZQoaAZHQHKUmEK3NLVoB0u/aAhHQL5VniKiwjd1fZQoaAZHQHJmTNpudf9oB0uqaAhHQL5V1emvW6N1fZQoaAZHQHG/14keIVNoB0uraAhHQL5V1xcE/0N1fZQoaAZHQHNRUZBLPD5oB0vGaAhHQL5V/c7hegN1fZQoaAZHQHF9NBKL879oB0u4aAhHQL5WCYK6WgR1fZQoaAZHQHGfFJ17pmpoB0u2aAhHQL5WF3RG+bp1fZQoaAZHQHN6IQz1schoB0v0aAhHQL5WJHn2ZiN1fZQoaAZHQHBsZaA4GUxoB0u3aAhHQL5WLAPd2xJ1fZQoaAZHQHM8stPHktFoB0vTaAhHQL5WK9R77bd1fZQoaAZHQHLvbvw3HaNoB0uiaAhHQL5WME2pAD91fZQoaAZHQHLJn9BKL89oB0usaAhHQL5WOiPhhph1fZQoaAZHQHD6kVN5+phoB0ufaAhHQL5WRFFUhmp1fZQoaAZHQHPFvSpiqhloB0vSaAhHQL5WSMx46fd1fZQoaAZHQHBkU1yeZohoB0u1aAhHQL5WeHaN+9d1fZQoaAZHQHFwjNQj2SNoB0uFaAhHQL5WkJl8PWh1fZQoaAZHQHKyR11W8yxoB0vJaAhHQL5WsoSL61t1fZQoaAZHQHMn2Z3LV4JoB0vdaAhHQL5W4y5I6Kd1fZQoaAZHQHBkKxs2vStoB0upaAhHQL5XEhJiAlR1fZQoaAZHQHJwQHAymANoB0vJaAhHQL5XGY287IV1fZQoaAZHQG8zwQlKK51oB0uoaAhHQL5XIk5ZKWd1fZQoaAZHQHAoBQJokAxoB0ugaAhHQL5XQ2g39751fZQoaAZHQHPpj50r9VFoB009AWgIR0C+V2WfK6nSdX2UKGgGR0BzYfZ00WM1aAdLuGgIR0C+V3PnW8RMdX2UKGgGR0B0Fief7JnyaAdLxWgIR0C+V3qWX1J2dX2UKGgGR0Bywp+MIeHSaAdLw2gIR0C+V4DdtVJddX2UKGgGR0By0EegctGvaAdL22gIR0C+V47JGOMmdX2UKGgGR0Bx3DYbsF+vaAdLuWgIR0C+V5Q/1QIldX2UKGgGR0ByB48FINExaAdLxWgIR0C+V5jPOY6XdX2UKGgGR0ByP9Muez2OaAdLwGgIR0C+V6YZqEeydX2UKGgGR0BxHMPMB6rvaAdLoWgIR0C+V6Vlf7aadX2UKGgGR0BwFBgXuVopaAdLumgIR0C+WAFIiC8OdX2UKGgGR0BzbFhJAdGRaAdL1mgIR0C+WBj/p+tsdX2UKGgGR0BxWq2G7BfsaAdLumgIR0C+WDW0iQkpdX2UKGgGR0ByAssNDtw8aAdLp2gIR0C+WEHMhX8wdX2UKGgGR0ByehuaWom5aAdLwWgIR0C+WGx/EwWWdX2UKGgGR0Bx/R2TxG2DaAdLr2gIR0C+WHujZcs2dX2UKGgGR0ByqpqsU7CBaAdLzGgIR0C+WI8Y2sJZdX2UKGgGR0BzzWA9V3lkaAdLuWgIR0C+WLH3+MqCdX2UKGgGR0Bwnhjvuw5eaAdLrmgIR0C+WLsPFvQ4dX2UKGgGR0BxtCrJbMX8aAdLs2gIR0C+WL2AskIHdX2UKGgGR0BxEJ3W4EwGaAdLqmgIR0C+WMNIwudxdX2UKGgGR0BzkgHGCI1taAdLz2gIR0C+WOcrEtNBdX2UKGgGR0ByKK/zreImaAdLs2gIR0C+WOhfKISEdX2UKGgGR0BzFOr/82rGaAdLxGgIR0C+WPR4D9wWdX2UKGgGR0BzYaFL39JjaAdLxGgIR0C+WPj4YaYNdX2UKGgGR0BxwvohY/3WaAdLvWgIR0C+WPp1V5rydX2UKGgGR0BxDb/JeVs2aAdLo2gIR0C+WS3DFZPmdX2UKGgGR0BzLFT987ZGaAdLsWgIR0C+WW64Ds+ndX2UKGgGR0BzTQWqLjxTaAdLwWgIR0C+WW+KXOW0dX2UKGgGR0Bw6zu0CzTnaAdLtWgIR0C+WXvrKNhmdX2UKGgGR0Bw3Vr+HaexaAdLtmgIR0C+WbYyj59FdX2UKGgGR0ByJtWQwK0EaAdLmmgIR0C+WbYrrgO0dX2UKGgGR0By6KPMjeKsaAdLrmgIR0C+Wc7HyVfNdX2UKGgGR0By13d9Dx9YaAdLtGgIR0C+Wc7cO9WZdX2UKGgGR0Bz1OWHDaXbaAdL22gIR0C+WdGJFb3XdX2UKGgGR0BDG05dWyTqaAdLUmgIR0C+WeBKHwgDdX2UKGgGR0By3iqn3ta7aAdLx2gIR0C+We7hegL7dX2UKGgGR0BzJBujynUEaAdL62gIR0C+WfFFH8TBdX2UKGgGR0ByKzxMFlkIaAdLv2gIR0C+WgRew9q2dX2UKGgGR0BzfP9BKL88aAdLuWgIR0C+Wgq/7BO6dX2UKGgGR0BzVM2m51/2aAdL0mgIR0C+Wh7UkOZtdX2UKGgGR0Bxh0lY2bXpaAdLy2gIR0C+WiL+o99udWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2460, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |