carolinetfls's picture
update model card README.md
752da2a
|
raw
history blame
6.66 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: plant-seedlings-model-ResNet18-freeze-0-12-20ep
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9327111984282908

plant-seedlings-model-ResNet18-freeze-0-12-20ep

This model is a fine-tuned version of microsoft/resnet-18 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2060
  • Accuracy: 0.9327

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4528 0.25 128 0.6686 0.7878
0.4291 0.5 256 0.6259 0.7903
0.4961 0.75 384 0.5677 0.8055
0.4637 1.01 512 0.5073 0.8330
0.6897 1.26 640 0.5817 0.8060
0.5257 1.51 768 0.5118 0.8276
0.5381 1.76 896 0.4809 0.8384
0.4736 2.01 1024 0.3976 0.8595
0.4967 2.26 1152 0.4192 0.8566
0.4505 2.51 1280 0.4128 0.8590
0.4211 2.77 1408 0.4075 0.8576
0.3877 3.02 1536 0.3796 0.8738
0.3134 3.27 1664 0.3906 0.8762
0.3596 3.52 1792 0.3703 0.8846
0.3859 3.77 1920 0.3125 0.8954
0.4076 4.02 2048 0.3718 0.8615
0.3109 4.28 2176 0.3449 0.8924
0.4588 4.53 2304 0.3377 0.8875
0.2923 4.78 2432 0.3001 0.8998
0.3273 5.03 2560 0.3187 0.8880
0.2541 5.28 2688 0.3432 0.8856
0.3059 5.53 2816 0.3236 0.8988
0.2979 5.78 2944 0.3532 0.8851
0.2748 6.04 3072 0.3407 0.8885
0.3537 6.29 3200 0.2925 0.8988
0.3364 6.54 3328 0.3071 0.9047
0.2135 6.79 3456 0.2765 0.9077
0.2023 7.04 3584 0.2919 0.9037
0.1977 7.29 3712 0.2812 0.8978
0.4042 7.54 3840 0.2954 0.8998
0.3662 7.8 3968 0.2857 0.9018
0.1872 8.05 4096 0.2504 0.9140
0.3959 8.3 4224 0.2984 0.8993
0.2403 8.55 4352 0.2847 0.8998
0.3689 8.8 4480 0.2872 0.9023
0.2819 9.05 4608 0.3104 0.9008
0.1926 9.3 4736 0.2871 0.8969
0.2371 9.56 4864 0.2733 0.9082
0.2566 9.81 4992 0.2816 0.9101
0.2174 10.06 5120 0.2719 0.9160
0.2359 10.31 5248 0.2497 0.9175
0.2986 10.56 5376 0.2847 0.9096
0.2239 10.81 5504 0.2493 0.9180
0.2132 11.06 5632 0.2567 0.9121
0.1934 11.32 5760 0.2722 0.9028
0.2026 11.57 5888 0.2456 0.9229
0.2457 11.82 6016 0.2483 0.9234
0.2537 12.07 6144 0.2409 0.9165
0.193 12.32 6272 0.2215 0.9239
0.1738 12.57 6400 0.2421 0.9165
0.2925 12.83 6528 0.2499 0.9150
0.1173 13.08 6656 0.2174 0.9258
0.2147 13.33 6784 0.2917 0.9131
0.1581 13.58 6912 0.2734 0.9175
0.1349 13.83 7040 0.2485 0.9165
0.1212 14.08 7168 0.2247 0.9268
0.2178 14.33 7296 0.2289 0.9268
0.0879 14.59 7424 0.2512 0.9219
0.2006 14.84 7552 0.2321 0.9293
0.2308 15.09 7680 0.2491 0.9263
0.2137 15.34 7808 0.2270 0.9312
0.1112 15.59 7936 0.2205 0.9249
0.1477 15.84 8064 0.2328 0.9307
0.1794 16.09 8192 0.2051 0.9332
0.0596 16.35 8320 0.2234 0.9347
0.0533 16.6 8448 0.2469 0.9293
0.1096 16.85 8576 0.1871 0.9401
0.1117 17.1 8704 0.2302 0.9249
0.1349 17.35 8832 0.2084 0.9391
0.1031 17.6 8960 0.2200 0.9283
0.2428 17.85 9088 0.2201 0.9298
0.1283 18.11 9216 0.2293 0.9273
0.1688 18.36 9344 0.2120 0.9307
0.0877 18.61 9472 0.2200 0.9229
0.1508 18.86 9600 0.2204 0.9327
0.0868 19.11 9728 0.2224 0.9293
0.211 19.36 9856 0.1988 0.9401
0.1059 19.61 9984 0.2082 0.9322
0.182 19.87 10112 0.2060 0.9327

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3