File size: 1,870 Bytes
e890b0a e78cffa e890b0a 2d48777 e890b0a 7401a7b 0689feb e890b0a 0689feb e890b0a 0689feb 66c3b4b 0689feb e890b0a 0689feb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
language:
- en
license: mit
datasets:
- cardiffnlp/super_tweeteval
pipeline_tag: text-classification
widget:
- text: Banana+Nutella snack pack=someone is gonna see me crying in the break room </s> chocolate hazelnut spread manufactured by Ferrero </s> Nutella
---
# cardiffnlp/twitter-roberta-base-nerd-latest
This is a RoBERTa-base model trained on 154M tweets until the end of December 2022 and finetuned for name entity Disambiguation (binary classification) on the _TweetNERD_ dataset of [SuperTweetEval](https://huggingface.co/datasets/cardiffnlp/super_tweeteval).
The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-2022-154m).
# Labels
<code>
"id2label": {
"0": "no",
"1": "yes"
}
</code>
## Example
```python
from transformers import pipeline
text = 'Banana+Nutella snack pack=someone is gonna see me crying in the break room'
definition = 'chocolate hazelnut spread manufactured by Ferrero'
target = 'Nutella'
model = "cardiffnlp/twitter-roberta-base-nerd-latest"
tokenizer = "cardiffnlp/twitter-roberta-base-nerd-latest"
text_input = f"{text} </s> {definition} </s> {target}"
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer)
pipe(text_input)
>> [{'label': 'yes', 'score': 0.9993378520011902}]
```
## Citation Information
Please cite the [reference paper](https://arxiv.org/abs/2310.14757) if you use this model.
```bibtex
@inproceedings{antypas2023supertweeteval,
title={SuperTweetEval: A Challenging, Unified and Heterogeneous Benchmark for Social Media NLP Research},
author={Dimosthenis Antypas and Asahi Ushio and Francesco Barbieri and Leonardo Neves and Kiamehr Rezaee and Luis Espinosa-Anke and Jiaxin Pei and Jose Camacho-Collados},
booktitle={Findings of the Association for Computational Linguistics: EMNLP 2023},
year={2023}
}
``` |