metadata
datasets:
- tweet_eval
metrics:
- f1
- accuracy
model-index:
- name: cardiffnlp/twitter-roberta-base-2021-124m-sentiment
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: tweet_eval
type: sentiment
split: test
metrics:
- name: Micro F1 (tweet_eval/sentiment)
type: micro_f1_tweet_eval/sentiment
value: 0.7133669814392706
- name: Macro F1 (tweet_eval/sentiment)
type: micro_f1_tweet_eval/sentiment
value: 0.7158353597305398
- name: Accuracy (tweet_eval/sentiment)
type: accuracy_tweet_eval/sentiment
value: 0.7133669814392706
pipeline_tag: text-classification
widget:
- text: >-
Get the all-analog Classic Vinyl Edition of "Takin Off" Album from
{@herbiehancock@} via {@bluenoterecords@} link below {{URL}}
example_title: topic_classification 1
- text: Yes, including Medicare and social security saving👍
example_title: sentiment 1
- text: All two of them taste like ass.
example_title: offensive 1
- text: If you wanna look like a badass, have drama on social media
example_title: irony 1
- text: Whoever just unfollowed me you a bitch
example_title: hate 1
- text: >-
I love swimming for the same reason I love meditating...the feeling of
weightlessness.
example_title: emotion 1
- text: Beautiful sunset last night from the pontoon @TupperLakeNY
example_title: emoji 1
cardiffnlp/twitter-roberta-base-2021-124m-sentiment
This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-2021-124m on the
tweet_eval (sentiment)
via tweetnlp
.
Training split is train
and parameters have been tuned on the validation split validation
.
Following metrics are achieved on the test split test
(link).
- F1 (micro): 0.7133669814392706
- F1 (macro): 0.7158353597305398
- Accuracy: 0.7133669814392706
Usage
Install tweetnlp via pip.
pip install tweetnlp
Load the model in python.
import tweetnlp
model = tweetnlp.Classifier("cardiffnlp/twitter-roberta-base-2021-124m-sentiment", max_length=128)
model.predict('Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}}')
Reference
@inproceedings{camacho-collados-etal-2022-tweetnlp,
title={{T}weet{NLP}: {C}utting-{E}dge {N}atural {L}anguage {P}rocessing for {S}ocial {M}edia},
author={Camacho-Collados, Jose and Rezaee, Kiamehr and Riahi, Talayeh and Ushio, Asahi and Loureiro, Daniel and Antypas, Dimosthenis and Boisson, Joanne and Espinosa-Anke, Luis and Liu, Fangyu and Mart{'\i}nez-C{'a}mara, Eugenio and others},
author = "Ushio, Asahi and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = nov,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}