File size: 7,218 Bytes
ee52490 d54766d ee52490 d54766d ee52490 d54766d ee52490 d54766d ee52490 d54766d ee52490 d54766d ee52490 e41bd7a ee52490 e41bd7a ee52490 e41bd7a ee52490 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
---
datasets:
- tweet_eval
metrics:
- f1
- accuracy
pipeline_tag: text-classification
widget:
- text: Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@}
via {@bluenoterecords@} link below {{URL}}
example_title: topic_classification 1
- text: Yes, including Medicare and social security saving👍
example_title: sentiment 1
- text: All two of them taste like ass.
example_title: offensive 1
- text: If you wanna look like a badass, have drama on social media
example_title: irony 1
- text: Whoever just unfollowed me you a bitch
example_title: hate 1
- text: I love swimming for the same reason I love meditating...the feeling of weightlessness.
example_title: emotion 1
- text: Beautiful sunset last night from the pontoon @TupperLakeNY
example_title: emoji 1
model-index:
- name: cardiffnlp/roberta-base-offensive
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: tweet_eval
type: offensive
split: test
metrics:
- type: micro_f1_tweet_eval/offensive
value: 0.8441860465116279
name: Micro F1 (tweet_eval/offensive)
- type: micro_f1_tweet_eval/offensive
value: 0.8038468085106383
name: Macro F1 (tweet_eval/offensive)
- type: accuracy_tweet_eval/offensive
value: 0.8441860465116279
name: Accuracy (tweet_eval/offensive)
- task:
type: text-classification
name: Text Classification
dataset:
name: tweet_eval
type: tweet_eval
config: offensive
split: train
metrics:
- type: accuracy
value: 0.8775595837529372
name: Accuracy
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTQ3ZjIwZDAyZDc5MmU0ZWE3Mjg3MGZkMzJjYTA4ODYxMmI1NmUyNWUyMWQwYjhhOThiMjVlYzcwMTIyYWE3NiIsInZlcnNpb24iOjF9.FGKrLdRO1Iljnac-g6wty0HrcE5vwfHpWzRtzm-lPKsInyrGbtFC6mh6fpWHquoKZN_XVD-3Ju1ivROv3PsYDA
- type: f1
value: 0.8617195443801995
name: F1 Macro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmE2MTJkNjUzOTczN2NkNzFmZmFkMmVlNzNkMTQxNThmYjY1NDJmYjI2MjJhZjc2M2I1OTJlYjg3ODQ5NTAwYiIsInZlcnNpb24iOjF9.JyPCbdFBiSnKAHO_fpGPKolFfS-QxCmgGILFTtRsO0yr53SFWZzvuWU3LF4eG_EkCskOCkhzJHe9ydFScf1cCg
- type: f1
value: 0.8775595837529372
name: F1 Micro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWJjZDdiNGQxYTEzOWM1ZWU2NzI5MDkyNmQ2NjNhYWMzZmUyMmU4YWYyMjQ3ZjlkNDFhNGFiZmM0ZjEyMmE0MSIsInZlcnNpb24iOjF9.h4RE_k9PKIV2aoJxt9K_hStetS0jvvnZuumo6EWqZek1jrVdNCw8hecEfpDxCMuV1nJG_Nb1Qb2CPHaehoiaAA
- type: f1
value: 0.8775635113600219
name: F1 Weighted
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjczZjlhOTlmOTYyOGZkODFhMzBkNThjNmQ3ZTVhZTY0ZTQ2YWY3YTY4ZDU1M2E5ZmEyMmFmODI2NjJjMTc5YiIsInZlcnNpb24iOjF9.LNoaYMgzp63FR4pgt49Bi-6Fwb7ocicdGesMntzBV9Y_eNl7f4Jx-Jl1V8jjB-Mas_Fj1BHqYgmVnsokZEnDCA
- type: precision
value: 0.8616963464593261
name: Precision Macro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWQ2MmI4YTI2NThlMDExODhkYzVhOGY4NmFlNjAxMzNjOTQ2NzNjYTBhYmM2NGRkYzIyYTEwYmQ2MDhhYzc5MyIsInZlcnNpb24iOjF9.dcwR0Y2MUzNt_-YSNFyLzxsVzCAglflGeLEm1EhQ2xU9cOpxKmGOADEETRVN-s8Qo-rfR0UTLBf8s1m_AJ01Bg
- type: precision
value: 0.8775595837529372
name: Precision Micro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjdlN2VhNjllYjNhMDM1NmQwZGVkMTZiZjY1ZjgxNDZlMDRlZjY2NGE2NzkwOTIwMzBlODQ1NTIwOTUzODVhMiIsInZlcnNpb24iOjF9.bMukPZRCgLsH5bRqkUys1DjubnLFh39mj0JEmWkGNPKNqgRq11IDsHpMICK2l8_kW25_wpiThELRXlYWI8L6CA
- type: precision
value: 0.8775674524222297
name: Precision Weighted
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWU2NDE3NzkxYjFlNDM3ZmI4MzQwYTVjOWVkY2Q3MTIwZGVlZTUzYzBkNGFmMjU4ODVlZTQwYTdlYzBlNDRjNSIsInZlcnNpb24iOjF9.PLj9bhs5wyqcANvgiYVbf8Gnpkn7H1IWg7lUjXez60QxfOcN0LdXbGttxu_y13Q41mbF4RW9MkC_OlVgxgiOBw
- type: recall
value: 0.8617427589865883
name: Recall Macro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzllZDBjMGY2ZTYyYTA5ODc4NjU1NWZkYTM4MWZlMDFkNjJhYTg3MTYwODYyZDYwYzc5MDliMTAzM2Q2NTk4YyIsInZlcnNpb24iOjF9.PUlMOsCQrowlUu1GGR9T2Hd50cOLsQHwu1FuwiLvWB25fLJYjFGTIai0UdBmtlTSKmviye_QzXrX1H_dJUAkBA
- type: recall
value: 0.8775595837529372
name: Recall Micro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjhkMzYxMWNmZjYxYTE2N2JjMjRhOWQ4YjZhMzI3NWU2YWI2ODI2MGViZmE0M2NkYjdmYmRmNTBkMjkwOTVlNiIsInZlcnNpb24iOjF9.PT7NY-polKG346y1T7fq1vC_wtzI_niOFeIuCZqXbexwnmtPKQYZGW8ag3690u4D_8wP9KQlJuPimiiO5OzRBg
- type: recall
value: 0.8775595837529372
name: Recall Weighted
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmY5M2RkZmU2ZDQyNzIzYjA4MGY3MTZmMGViYTU3OWI4ODFlN2VhOWVhYWEwN2VkOWM3YTQ0ODU3NDk5MzNkMSIsInZlcnNpb24iOjF9.U1k9ishrbEKkcceXP-FgodUG-GbE-g1B1tK-hCpZNpCYKicZrxI7Ft5fNZ9jGjO8_eRZNpL8o1DYmON2-kjFBw
- type: loss
value: 0.31321173906326294
name: loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWMwYzM0MTg5YWEzYjBmMTg2NjgwMDc5NDY5NmQ4NWU1MjNjMTE4NzNmMDZmNWQzZGNlZDc3NGZjNzQzZTVjNiIsInZlcnNpb24iOjF9.YGXjIov_YlgdewGVUVySHZwVd874bUxvAkHcNXYf3j_at4DB14V1KLXmts0xXyHz0iTqJPjS6frr0aTHcixvBA
---
# cardiffnlp/roberta-base-offensive
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the
[`tweet_eval (offensive)`](https://huggingface.co/datasets/tweet_eval)
via [`tweetnlp`](https://github.com/cardiffnlp/tweetnlp).
Training split is `train` and parameters have been tuned on the validation split `validation`.
Following metrics are achieved on the test split `test` ([link](https://huggingface.co/cardiffnlp/roberta-base-offensive/raw/main/metric.json)).
- F1 (micro): 0.8441860465116279
- F1 (macro): 0.8038468085106383
- Accuracy: 0.8441860465116279
### Usage
Install tweetnlp via pip.
```shell
pip install tweetnlp
```
Load the model in python.
```python
import tweetnlp
model = tweetnlp.Classifier("cardiffnlp/roberta-base-offensive", max_length=128)
model.predict('Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}}')
```
### Reference
```
@inproceedings{camacho-collados-etal-2022-tweetnlp,
title={{T}weet{NLP}: {C}utting-{E}dge {N}atural {L}anguage {P}rocessing for {S}ocial {M}edia},
author={Camacho-Collados, Jose and Rezaee, Kiamehr and Riahi, Talayeh and Ushio, Asahi and Loureiro, Daniel and Antypas, Dimosthenis and Boisson, Joanne and Espinosa-Anke, Luis and Liu, Fangyu and Mart{'\i}nez-C{'a}mara, Eugenio and others},
author = "Ushio, Asahi and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = nov,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
|