File size: 11,772 Bytes
bf6f9e0
bc4ad6d
 
bf6f9e0
 
bc4ad6d
bf6f9e0
 
 
 
bc4ad6d
bf6f9e0
 
 
 
 
 
bc4ad6d
bf6f9e0
 
 
aed0d42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf6f9e0
 
 
 
 
 
 
 
 
 
 
 
aed0d42
 
 
bf6f9e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aed0d42
bf6f9e0
 
 
 
aed0d42
 
 
 
 
 
 
 
 
 
 
 
 
bf6f9e0
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
language:
- he
base_model: cantillation/Teamim-AllNusah-whisper-medium_Random-True_Mid
tags:
- hf-asr-leaderboard
- generated_from_trainer
metrics:
- wer
model-index:
- name: he-cantillation
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# he-cantillation

This model is a fine-tuned version of [cantillation/Teamim-AllNusah-whisper-medium_Random-True_Mid](https://huggingface.co/cantillation/Teamim-AllNusah-whisper-medium_Random-True_Mid) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1410
- Wer: 11.6348
- Avg Precision Exact: 0.8905
- Avg Recall Exact: 0.8961
- Avg F1 Exact: 0.8928
- Avg Precision Letter Shift: 0.9069
- Avg Recall Letter Shift: 0.9133
- Avg F1 Letter Shift: 0.9096
- Avg Precision Word Level: 0.9091
- Avg Recall Word Level: 0.9146
- Avg F1 Word Level: 0.9114
- Avg Precision Word Shift: 0.9658
- Avg Recall Word Shift: 0.9719
- Avg F1 Word Shift: 0.9683
- Precision Median Exact: 0.9375
- Recall Median Exact: 0.9412
- F1 Median Exact: 0.9630
- Precision Max Exact: 1.0
- Recall Max Exact: 1.0
- F1 Max Exact: 1.0
- Precision Min Exact: 0.0
- Recall Min Exact: 0.0
- F1 Min Exact: 0.0
- Precision Min Letter Shift: 0.0
- Recall Min Letter Shift: 0.0
- F1 Min Letter Shift: 0.0
- Precision Min Word Level: 0.0
- Recall Min Word Level: 0.0
- F1 Min Word Level: 0.0
- Precision Min Word Shift: 0.6
- Recall Min Word Shift: 0.6429
- F1 Min Word Shift: 0.6429

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     | Avg Precision Exact | Avg Recall Exact | Avg F1 Exact | Avg Precision Letter Shift | Avg Recall Letter Shift | Avg F1 Letter Shift | Avg Precision Word Level | Avg Recall Word Level | Avg F1 Word Level | Avg Precision Word Shift | Avg Recall Word Shift | Avg F1 Word Shift | Precision Median Exact | Recall Median Exact | F1 Median Exact | Precision Max Exact | Recall Max Exact | F1 Max Exact | Precision Min Exact | Recall Min Exact | F1 Min Exact | Precision Min Letter Shift | Recall Min Letter Shift | F1 Min Letter Shift | Precision Min Word Level | Recall Min Word Level | F1 Min Word Level | Precision Min Word Shift | Recall Min Word Shift | F1 Min Word Shift |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------------------:|:----------------:|:------------:|:--------------------------:|:-----------------------:|:-------------------:|:------------------------:|:---------------------:|:-----------------:|:------------------------:|:---------------------:|:-----------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:--------------------------:|:-----------------------:|:-------------------:|:------------------------:|:---------------------:|:-----------------:|:------------------------:|:---------------------:|:-----------------:|
| No log        | 0.0   | 1    | 2.8792          | 88.9597 | 0.1569              | 0.1670           | 0.1602       | 0.1946                     | 0.2074                  | 0.1987              | 0.2144                   | 0.2256                | 0.2176            | 0.3720                   | 0.3988                | 0.3809            | 0.1088                 | 0.125               | 0.1213          | 0.75                | 0.7692           | 0.7407       | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.0                      | 0.0                   | 0.0               |
| 0.2893        | 0.04  | 500  | 0.1747          | 17.9830 | 0.8373              | 0.8390           | 0.8373       | 0.8615                     | 0.8649                  | 0.8624              | 0.8683                   | 0.8713                | 0.8691            | 0.9388                   | 0.9424                | 0.9398            | 0.9199                 | 0.9199              | 0.9016          | 1.0                 | 1.0              | 1.0          | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.0                      | 0.0                   | 0.0               |
| 0.209         | 0.08  | 1000 | 0.1427          | 14.5648 | 0.8556              | 0.8629           | 0.8586       | 0.8786                     | 0.8862                  | 0.8818              | 0.8835                   | 0.8907                | 0.8865            | 0.9515                   | 0.9579                | 0.9541            | 0.9286                 | 0.9286              | 0.9286          | 1.0                 | 1.0              | 1.0          | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.3333                   | 0.3077                | 0.32              |
| 0.1831        | 0.12  | 1500 | 0.1381          | 14.2675 | 0.8740              | 0.8825           | 0.8776       | 0.8951                     | 0.9045                  | 0.8991              | 0.8990                   | 0.9074                | 0.9026            | 0.9536                   | 0.9605                | 0.9565            | 0.9286                 | 0.9310              | 0.9333          | 1.0                 | 1.0              | 1.0          | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.6                      | 0.6429                | 0.6207            |
| 0.1371        | 0.16  | 2000 | 0.1376          | 13.5244 | 0.8738              | 0.8789           | 0.8757       | 0.8951                     | 0.9004                  | 0.8971              | 0.8987                   | 0.9032                | 0.9004            | 0.9588                   | 0.9627                | 0.9602            | 0.9333                 | 0.9333              | 0.9333          | 1.0                 | 1.0              | 1.0          | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.6923                   | 0.7143                | 0.7333            |
| 0.1138        | 0.2   | 2500 | 0.1359          | 12.7601 | 0.8774              | 0.8859           | 0.8811       | 0.8963                     | 0.9055                  | 0.9003              | 0.9003                   | 0.9072                | 0.9032            | 0.9582                   | 0.9665                | 0.9618            | 0.9333                 | 0.9333              | 0.9600          | 1.0                 | 1.0              | 1.0          | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.6                      | 0.6923                | 0.6429            |
| 0.1104        | 0.24  | 3000 | 0.1356          | 12.8450 | 0.8749              | 0.8821           | 0.8780       | 0.8912                     | 0.8993                  | 0.8947              | 0.8940                   | 0.9010                | 0.8970            | 0.9582                   | 0.9657                | 0.9614            | 0.9333                 | 0.9333              | 0.9565          | 1.0                 | 1.0              | 1.0          | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.6                      | 0.7273                | 0.6667            |
| 0.0909        | 0.28  | 3500 | 0.1409          | 12.4204 | 0.8808              | 0.8873           | 0.8835       | 0.9007                     | 0.9080                  | 0.9038              | 0.9031                   | 0.9100                | 0.9060            | 0.9639                   | 0.9706                | 0.9667            | 0.9333                 | 0.9333              | 0.9488          | 1.0                 | 1.0              | 1.0          | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.6                      | 0.6923                | 0.6429            |
| 0.09          | 0.32  | 4000 | 0.1370          | 12.0170 | 0.8886              | 0.8910           | 0.8893       | 0.9053                     | 0.9085                  | 0.9064              | 0.9079                   | 0.9106                | 0.9088            | 0.9655                   | 0.9685                | 0.9665            | 0.9375                 | 0.9393              | 0.9630          | 1.0                 | 1.0              | 1.0          | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.6667                   | 0.7333                | 0.7143            |
| 0.0685        | 0.36  | 4500 | 0.1405          | 11.9533 | 0.8912              | 0.8946           | 0.8924       | 0.9079                     | 0.9121                  | 0.9095              | 0.9103                   | 0.9140                | 0.9117            | 0.9650                   | 0.9703                | 0.9672            | 0.9412                 | 0.9412              | 0.9630          | 1.0                 | 1.0              | 1.0          | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.6                      | 0.6429                | 0.6429            |
| 0.0647        | 0.4   | 5000 | 0.1410          | 11.6348 | 0.8905              | 0.8961           | 0.8928       | 0.9069                     | 0.9133                  | 0.9096              | 0.9091                   | 0.9146                | 0.9114            | 0.9658                   | 0.9719                | 0.9683            | 0.9375                 | 0.9412              | 0.9630          | 1.0                 | 1.0              | 1.0          | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.6                      | 0.6429                | 0.6429            |


### Framework versions

- Transformers 4.39.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0