metadata
language:
- he
base_model: ivrit-ai/whisper-v2-pd1-e1
tags:
- hf-asr-leaderboard
- generated_from_trainer
metrics:
- wer
model-index:
- name: he-cantillation
results: []
he-cantillation
This model is a fine-tuned version of ivrit-ai/whisper-v2-pd1-e1 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1099
- Wer: 16.2686
- Avg Precision Exact: 0.8645
- Avg Recall Exact: 0.8618
- Avg F1 Exact: 0.8626
- Avg Precision Letter Shift: 0.8838
- Avg Recall Letter Shift: 0.8813
- Avg F1 Letter Shift: 0.8819
- Avg Precision Word Level: 0.8869
- Avg Recall Word Level: 0.8850
- Avg F1 Word Level: 0.8853
- Avg Precision Word Shift: 0.9412
- Avg Recall Word Shift: 0.9408
- Avg F1 Word Shift: 0.9403
- Precision Median Exact: 0.9231
- Recall Median Exact: 0.9231
- F1 Median Exact: 0.9286
- Precision Max Exact: 1.0
- Recall Max Exact: 1.0
- F1 Max Exact: 1.0
- Precision Min Exact: 0.0
- Recall Min Exact: 0.0
- F1 Min Exact: 0.0
- Precision Min Letter Shift: 0.0
- Recall Min Letter Shift: 0.0
- F1 Min Letter Shift: 0.0
- Precision Min Word Level: 0.0
- Recall Min Word Level: 0.0
- F1 Min Word Level: 0.0
- Precision Min Word Shift: 0.1429
- Recall Min Word Shift: 0.0909
- F1 Min Word Shift: 0.1111
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 3000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Avg Precision Exact | Avg Recall Exact | Avg F1 Exact | Avg Precision Letter Shift | Avg Recall Letter Shift | Avg F1 Letter Shift | Avg Precision Word Level | Avg Recall Word Level | Avg F1 Word Level | Avg Precision Word Shift | Avg Recall Word Shift | Avg F1 Word Shift | Precision Median Exact | Recall Median Exact | F1 Median Exact | Precision Max Exact | Recall Max Exact | F1 Max Exact | Precision Min Exact | Recall Min Exact | F1 Min Exact | Precision Min Letter Shift | Recall Min Letter Shift | F1 Min Letter Shift | Precision Min Word Level | Recall Min Word Level | F1 Min Word Level | Precision Min Word Shift | Recall Min Word Shift | F1 Min Word Shift |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1552 | 0.0517 | 1000 | 0.1843 | 26.9266 | 0.7790 | 0.7668 | 0.7718 | 0.8099 | 0.7974 | 0.8025 | 0.8153 | 0.8044 | 0.8088 | 0.8935 | 0.8895 | 0.8902 | 0.8462 | 0.8462 | 0.8462 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.0909 | 0.1111 |
0.0973 | 0.1033 | 2000 | 0.1317 | 19.9251 | 0.8323 | 0.8338 | 0.8323 | 0.8540 | 0.8558 | 0.8542 | 0.8583 | 0.8605 | 0.8587 | 0.9204 | 0.9258 | 0.9223 | 0.9091 | 0.9091 | 0.9091 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.0625 | 0.1550 | 3000 | 0.1099 | 16.2686 | 0.8645 | 0.8618 | 0.8626 | 0.8838 | 0.8813 | 0.8819 | 0.8869 | 0.8850 | 0.8853 | 0.9412 | 0.9408 | 0.9403 | 0.9231 | 0.9231 | 0.9286 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.0909 | 0.1111 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.2.1
- Datasets 2.20.0
- Tokenizers 0.19.1