--- language: - he base_model: ivrit-ai/whisper-v2-pd1-e1 tags: - hf-asr-leaderboard - generated_from_trainer metrics: - wer model-index: - name: he-cantillation results: [] --- # he-cantillation This model is a fine-tuned version of [ivrit-ai/whisper-v2-pd1-e1](https://huggingface.co/ivrit-ai/whisper-v2-pd1-e1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1099 - Wer: 16.2686 - Avg Precision Exact: 0.8645 - Avg Recall Exact: 0.8618 - Avg F1 Exact: 0.8626 - Avg Precision Letter Shift: 0.8838 - Avg Recall Letter Shift: 0.8813 - Avg F1 Letter Shift: 0.8819 - Avg Precision Word Level: 0.8869 - Avg Recall Word Level: 0.8850 - Avg F1 Word Level: 0.8853 - Avg Precision Word Shift: 0.9412 - Avg Recall Word Shift: 0.9408 - Avg F1 Word Shift: 0.9403 - Precision Median Exact: 0.9231 - Recall Median Exact: 0.9231 - F1 Median Exact: 0.9286 - Precision Max Exact: 1.0 - Recall Max Exact: 1.0 - F1 Max Exact: 1.0 - Precision Min Exact: 0.0 - Recall Min Exact: 0.0 - F1 Min Exact: 0.0 - Precision Min Letter Shift: 0.0 - Recall Min Letter Shift: 0.0 - F1 Min Letter Shift: 0.0 - Precision Min Word Level: 0.0 - Recall Min Word Level: 0.0 - F1 Min Word Level: 0.0 - Precision Min Word Shift: 0.1429 - Recall Min Word Shift: 0.0909 - F1 Min Word Shift: 0.1111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Avg Precision Exact | Avg Recall Exact | Avg F1 Exact | Avg Precision Letter Shift | Avg Recall Letter Shift | Avg F1 Letter Shift | Avg Precision Word Level | Avg Recall Word Level | Avg F1 Word Level | Avg Precision Word Shift | Avg Recall Word Shift | Avg F1 Word Shift | Precision Median Exact | Recall Median Exact | F1 Median Exact | Precision Max Exact | Recall Max Exact | F1 Max Exact | Precision Min Exact | Recall Min Exact | F1 Min Exact | Precision Min Letter Shift | Recall Min Letter Shift | F1 Min Letter Shift | Precision Min Word Level | Recall Min Word Level | F1 Min Word Level | Precision Min Word Shift | Recall Min Word Shift | F1 Min Word Shift | |:-------------:|:------:|:----:|:---------------:|:-------:|:-------------------:|:----------------:|:------------:|:--------------------------:|:-----------------------:|:-------------------:|:------------------------:|:---------------------:|:-----------------:|:------------------------:|:---------------------:|:-----------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:--------------------------:|:-----------------------:|:-------------------:|:------------------------:|:---------------------:|:-----------------:|:------------------------:|:---------------------:|:-----------------:| | 0.1552 | 0.0517 | 1000 | 0.1843 | 26.9266 | 0.7790 | 0.7668 | 0.7718 | 0.8099 | 0.7974 | 0.8025 | 0.8153 | 0.8044 | 0.8088 | 0.8935 | 0.8895 | 0.8902 | 0.8462 | 0.8462 | 0.8462 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.0909 | 0.1111 | | 0.0973 | 0.1033 | 2000 | 0.1317 | 19.9251 | 0.8323 | 0.8338 | 0.8323 | 0.8540 | 0.8558 | 0.8542 | 0.8583 | 0.8605 | 0.8587 | 0.9204 | 0.9258 | 0.9223 | 0.9091 | 0.9091 | 0.9091 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0625 | 0.1550 | 3000 | 0.1099 | 16.2686 | 0.8645 | 0.8618 | 0.8626 | 0.8838 | 0.8813 | 0.8819 | 0.8869 | 0.8850 | 0.8853 | 0.9412 | 0.9408 | 0.9403 | 0.9231 | 0.9231 | 0.9286 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.0909 | 0.1111 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.2.1 - Datasets 2.20.0 - Tokenizers 0.19.1