File size: 17,275 Bytes
8ae5fc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
#pragma once
#include <thrust/detail/config.h>
#if THRUST_CPP_DIALECT >= 2014
#include <thrust/device_allocator.h>
#include <thrust/future.h>
#include <unittest/unittest.h>
#include <string>
// TODO Cover these cases from testing/async_reduce.cu:
// - [x] test_async_reduce_after ("after_future" in test_policy_overloads)
// - [ ] test_async_reduce_on_then_after (KNOWN_FAILURE, see #1195)
// - [ ] all the child variants (e.g. with allocator) too
// - [ ] test_async_copy_then_reduce (Need to figure out how to fit this in)
// - [ ] test_async_reduce_caching (only useful when returning future)
namespace testing
{
namespace async
{
// Tests that policies are handled correctly for all overloads of an async
// algorithm.
//
// The AlgoDef parameter type defines an async algorithm, its overloads, and
// abstracts its invocation. See the async/mixins.h for a documented example of
// this interface and some convenience mixins that can be used to construct a
// definition quickly.
//
// The AlgoDef interface is used to run several tests of the algorithm,
// exhaustively testing all overloads for algorithm correctness and proper
// policy handling.
//
// ## Basic tests
//
// In the basic tests, each overload is called repeatedly with:
// 1) No policy
// 2) thrust::device
// 3) thrust::device(thrust::device_allocator<void>)
// 4) thrust::device.on(stream)
// 5) thrust::device(thrust::device_allocator<void>).on(stream)
//
// The output of the async algorithm is compared against a reference output,
// and the returned event/future is tested to make sure it holds a reference to
// the expected stream.
//
// ## After Future tests
//
// The after_future tests check that the future/event returned from an algorithm
// behaves properly when consumed by a policy's `.after` method.
template <typename AlgoDef>
struct test_policy_overloads
{
using algo_def = AlgoDef;
using input_type = typename algo_def::input_type;
using output_type = typename algo_def::output_type;
using postfix_args_type = typename algo_def::postfix_args_type;
static constexpr std::size_t num_postfix_arg_sets =
std::tuple_size<postfix_args_type>::value;
// Main entry point; call this from a unit test function.
static void run(std::size_t num_values)
{
test_postfix_overloads(num_values);
}
private:
template <std::size_t Size>
using size_const = std::integral_constant<std::size_t, Size>;
//----------------------------------------------------------------------------
// Recursively call sub tests for each overload set in postfix_args:
template <std::size_t PostfixIdx = 0>
static void test_postfix_overloads(std::size_t const num_values,
size_const<PostfixIdx> = {})
{
static_assert(PostfixIdx < num_postfix_arg_sets, "Internal error.");
run_basic_policy_tests<PostfixIdx>(num_values);
run_after_future_tests<PostfixIdx>(num_values);
// Recurse to test next round of overloads:
test_postfix_overloads(num_values, size_const<PostfixIdx + 1>{});
}
static void test_postfix_overloads(std::size_t const,
size_const<num_postfix_arg_sets>)
{
// terminal case, no-op
}
//----------------------------------------------------------------------------
// For the specified postfix overload set, test the algorithm with several
// different policy configurations.
template <std::size_t PostfixIdx>
static void run_basic_policy_tests(std::size_t const num_values)
{
// When a policy uses the default stream, the algorithm implementation
// should spawn a new stream in the returned event:
auto using_default_stream = [](auto& e) {
ASSERT_NOT_EQUAL(thrust::cuda_cub::default_stream(),
e.stream().native_handle());
};
// When a policy uses a non-default stream, the implementation should pass
// the stream through to the output:
thrust::system::cuda::detail::unique_stream test_stream{};
auto using_test_stream = [&test_stream](auto& e) {
ASSERT_EQUAL(test_stream.native_handle(), e.stream().native_handle());
};
// Test the different types of policies:
basic_policy_test<PostfixIdx>("(no policy)",
std::make_tuple(),
using_default_stream,
num_values);
basic_policy_test<PostfixIdx>("thrust::device",
std::make_tuple(thrust::device),
using_default_stream,
num_values);
basic_policy_test<PostfixIdx>(
"thrust::device(thrust::device_allocator<void>{})",
std::make_tuple(thrust::device(thrust::device_allocator<void>{})),
using_default_stream,
num_values);
basic_policy_test<PostfixIdx>("thrust::device.on(test_stream.get())",
std::make_tuple(
thrust::device.on(test_stream.get())),
using_test_stream,
num_values);
basic_policy_test<PostfixIdx>(
"thrust::device(thrust::device_allocator<void>{}).on(test_stream.get())",
std::make_tuple(
thrust::device(thrust::device_allocator<void>{}).on(test_stream.get())),
using_test_stream,
num_values);
}
// Invoke the algorithm multiple times with the provided policy and validate
// the results.
template <std::size_t PostfixIdx,
typename PrefixArgTuple,
typename ValidateEvent>
static void basic_policy_test(std::string const &policy_desc,
PrefixArgTuple &&prefix_tuple_ref,
ValidateEvent const &validate,
std::size_t num_values)
try
{
// Sink the prefix tuple into a const local so it can be safely passed to
// multiple invocations without worrying about potential modifications.
using prefix_tuple_type = thrust::remove_cvref_t<PrefixArgTuple>;
prefix_tuple_type const prefix_tuple = THRUST_FWD(prefix_tuple_ref);
using postfix_tuple_type =
std::tuple_element_t<PostfixIdx, postfix_args_type>;
postfix_tuple_type const postfix_tuple = get_postfix_tuple<PostfixIdx>();
// Generate index sequences for the tuples:
constexpr auto prefix_tuple_size = std::tuple_size<prefix_tuple_type>{};
constexpr auto postfix_tuple_size = std::tuple_size<postfix_tuple_type>{};
using prefix_index_seq = std::make_index_sequence<prefix_tuple_size>;
using postfix_index_seq = std::make_index_sequence<postfix_tuple_size>;
// Use unique, non-const inputs for each invocation to support in-place
// algo_def configurations.
input_type input_a = algo_def::generate_input(num_values);
input_type input_b = algo_def::generate_input(num_values);
input_type input_c = algo_def::generate_input(num_values);
input_type input_d = algo_def::generate_input(num_values);
input_type input_ref = algo_def::generate_input(num_values);
output_type output_a = algo_def::generate_output(num_values, input_a);
output_type output_b = algo_def::generate_output(num_values, input_b);
output_type output_c = algo_def::generate_output(num_values, input_c);
output_type output_d = algo_def::generate_output(num_values, input_d);
output_type output_ref = algo_def::generate_output(num_values, input_ref);
// Invoke multiple overlapping async algorithms, capturing their outputs
// and events/futures:
auto e_a = algo_def::invoke_async(prefix_tuple,
prefix_index_seq{},
input_a,
output_a,
postfix_tuple,
postfix_index_seq{});
auto e_b = algo_def::invoke_async(prefix_tuple,
prefix_index_seq{},
input_b,
output_b,
postfix_tuple,
postfix_index_seq{});
auto e_c = algo_def::invoke_async(prefix_tuple,
prefix_index_seq{},
input_c,
output_c,
postfix_tuple,
postfix_index_seq{});
auto e_d = algo_def::invoke_async(prefix_tuple,
prefix_index_seq{},
input_d,
output_d,
postfix_tuple,
postfix_index_seq{});
// Let reference calc overlap with async testing:
algo_def::invoke_reference(input_ref,
output_ref,
postfix_tuple,
postfix_index_seq{});
// These wait on the e_X events:
algo_def::compare_outputs(e_a, output_ref, output_a);
algo_def::compare_outputs(e_b, output_ref, output_b);
algo_def::compare_outputs(e_c, output_ref, output_c);
algo_def::compare_outputs(e_d, output_ref, output_d);
validate(e_a);
validate(e_b);
validate(e_c);
validate(e_d);
}
catch (unittest::UnitTestException &exc)
{
// Append some identifying information to the exception to help with
// debugging:
using overload_t = std::tuple_element_t<PostfixIdx, postfix_args_type>;
std::string const overload_desc =
unittest::demangle(typeid(overload_t).name());
std::string const input_desc =
unittest::demangle(typeid(input_type).name());
std::string const output_desc =
unittest::demangle(typeid(output_type).name());
exc << "\n"
<< " - algo_def::description = " << algo_def::description() << "\n"
<< " - test = basic_policy\n"
<< " - policy = " << policy_desc << "\n"
<< " - input_type = " << input_desc << "\n"
<< " - output_type = " << output_desc << "\n"
<< " - tuple of trailing arguments = " << overload_desc << "\n"
<< " - num_values = " << num_values;
throw;
}
//----------------------------------------------------------------------------
// Test .after(event/future) handling:
template <std::size_t PostfixIdx>
static void run_after_future_tests(std::size_t const num_values)
try
{
using postfix_tuple_type =
std::tuple_element_t<PostfixIdx, postfix_args_type>;
postfix_tuple_type const postfix_tuple = get_postfix_tuple<PostfixIdx>();
// Generate index sequences for the tuples. Prefix size always = 1 here,
// since the async algorithms are always invoked with a single prefix
// arg (the execution policy) here.
constexpr auto postfix_tuple_size = std::tuple_size<postfix_tuple_type>{};
using prefix_index_seq = std::make_index_sequence<1>;
using postfix_index_seq = std::make_index_sequence<postfix_tuple_size>;
// Use unique, non-const inputs for each invocation to support in-place
// algo_def configurations.
input_type input_a = algo_def::generate_input(num_values);
input_type input_b = algo_def::generate_input(num_values);
input_type input_c = algo_def::generate_input(num_values);
input_type input_tmp = algo_def::generate_input(num_values);
input_type input_ref = algo_def::generate_input(num_values);
output_type output_a = algo_def::generate_output(num_values, input_a);
output_type output_b = algo_def::generate_output(num_values, input_b);
output_type output_c = algo_def::generate_output(num_values, input_c);
output_type output_tmp = algo_def::generate_output(num_values, input_tmp);
output_type output_ref = algo_def::generate_output(num_values, input_ref);
auto e_a = algo_def::invoke_async(std::make_tuple(thrust::device),
prefix_index_seq{},
input_a,
output_a,
postfix_tuple,
postfix_index_seq{});
ASSERT_EQUAL(true, e_a.valid_stream());
auto const stream_a = e_a.stream().native_handle();
// Execution on default stream should create a new stream in the result:
ASSERT_NOT_EQUAL_QUIET(thrust::cuda_cub::default_stream(), stream_a);
//--------------------------------------------------------------------------
// Test event consumption when the event is an rvalue.
//--------------------------------------------------------------------------
// Using `forward_as_tuple` instead of `make_tuple` to explicitly control
// value categories.
// Explicitly order this invocation after e_a:
auto e_b =
algo_def::invoke_async(std::forward_as_tuple(thrust::device.after(e_a)),
prefix_index_seq{},
input_b,
output_b,
postfix_tuple,
postfix_index_seq{});
ASSERT_EQUAL(true, e_b.valid_stream());
auto const stream_b = e_b.stream().native_handle();
// Second invocation should use same stream as before:
ASSERT_EQUAL_QUIET(stream_a, stream_b);
// Verify that double consumption of e_a produces an exception:
ASSERT_THROWS_EQUAL(auto x = algo_def::invoke_async(
std::forward_as_tuple(thrust::device.after(e_a)),
prefix_index_seq{},
input_tmp,
output_tmp,
postfix_tuple,
postfix_index_seq{});
THRUST_UNUSED_VAR(x),
thrust::event_error,
thrust::event_error(thrust::event_errc::no_state));
//--------------------------------------------------------------------------
// Test event consumption when the event is an lvalue
//--------------------------------------------------------------------------
// Explicitly order this invocation after e_b:
auto policy_after_e_b = thrust::device.after(e_b);
auto policy_after_e_b_tuple = std::forward_as_tuple(policy_after_e_b);
auto e_c =
algo_def::invoke_async(policy_after_e_b_tuple,
prefix_index_seq{},
input_c,
output_c,
postfix_tuple,
postfix_index_seq{});
ASSERT_EQUAL(true, e_c.valid_stream());
auto const stream_c = e_c.stream().native_handle();
// Should use same stream as e_b:
ASSERT_EQUAL_QUIET(stream_b, stream_c);
// Verify that double consumption of e_b produces an exception:
ASSERT_THROWS_EQUAL(
auto x = algo_def::invoke_async(policy_after_e_b_tuple,
prefix_index_seq{},
input_tmp,
output_tmp,
postfix_tuple,
postfix_index_seq{});
THRUST_UNUSED_VAR(x),
thrust::event_error,
thrust::event_error(thrust::event_errc::no_state));
// Let reference calc overlap with async testing:
algo_def::invoke_reference(input_ref,
output_ref,
postfix_tuple,
postfix_index_seq{});
// Validate results
// Use e_c for all three checks -- e_a and e_b will not pass the event
// checks since their streams were stolen by dependencies.
algo_def::compare_outputs(e_c, output_ref, output_a);
algo_def::compare_outputs(e_c, output_ref, output_b);
algo_def::compare_outputs(e_c, output_ref, output_c);
}
catch (unittest::UnitTestException &exc)
{
// Append some identifying information to the exception to help with
// debugging:
using postfix_t = std::tuple_element_t<PostfixIdx, postfix_args_type>;
std::string const postfix_desc =
unittest::demangle(typeid(postfix_t).name());
std::string const input_desc =
unittest::demangle(typeid(input_type).name());
std::string const output_desc =
unittest::demangle(typeid(output_type).name());
exc << "\n"
<< " - algo_def::description = " << algo_def::description() << "\n"
<< " - test = after_future\n"
<< " - input_type = " << input_desc << "\n"
<< " - output_type = " << output_desc << "\n"
<< " - tuple of trailing arguments = " << postfix_desc << "\n"
<< " - num_values = " << num_values;
throw;
}
//----------------------------------------------------------------------------
// Various helper functions:
template <std::size_t PostfixIdx>
static auto get_postfix_tuple()
{
return std::get<PostfixIdx>(algo_def::generate_postfix_args());
}
};
} // namespace async
} // namespace testing
#endif // C++14
|