File size: 11,884 Bytes
0dc1b04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* @file
* Simple binary operator functor types
*/
/******************************************************************************
* Simple functor operators
******************************************************************************/
#pragma once
#include <cub/config.cuh>
#include <cub/util_cpp_dialect.cuh>
#include <cub/util_type.cuh>
#include <cuda/std/functional>
#include <cuda/std/type_traits>
#include <cuda/std/utility>
CUB_NAMESPACE_BEGIN
/**
* @addtogroup UtilModule
* @{
*/
/// @brief Inequality functor (wraps equality functor)
template <typename EqualityOp>
struct InequalityWrapper
{
/// Wrapped equality operator
EqualityOp op;
/// Constructor
__host__ __device__ __forceinline__ InequalityWrapper(EqualityOp op)
: op(op)
{}
/// Boolean inequality operator, returns `t != u`
template <typename T, typename U>
__host__ __device__ __forceinline__ bool operator()(T &&t, U &&u)
{
return !op(::cuda::std::forward<T>(t), ::cuda::std::forward<U>(u));
}
};
#if CUB_CPP_DIALECT > 2011
using Equality = ::cuda::std::equal_to<>;
using Inequality = ::cuda::std::not_equal_to<>;
using Sum = ::cuda::std::plus<>;
using Difference = ::cuda::std::minus<>;
using Division = ::cuda::std::divides<>;
#else
/// @brief Default equality functor
struct Equality
{
/// Boolean equality operator, returns `t == u`
template <typename T, typename U>
__host__ __device__ __forceinline__ bool operator()(T &&t, U &&u) const
{
return ::cuda::std::forward<T>(t) == ::cuda::std::forward<U>(u);
}
};
/// @brief Default inequality functor
struct Inequality
{
/// Boolean inequality operator, returns `t != u`
template <typename T, typename U>
__host__ __device__ __forceinline__ bool operator()(T &&t, U &&u) const
{
return ::cuda::std::forward<T>(t) != ::cuda::std::forward<U>(u);
}
};
/// @brief Default sum functor
struct Sum
{
/// Binary sum operator, returns `t + u`
template <typename T, typename U>
__host__ __device__ __forceinline__ auto operator()(T &&t, U &&u) const
-> decltype(::cuda::std::forward<T>(t) + ::cuda::std::forward<U>(u))
{
return ::cuda::std::forward<T>(t) + ::cuda::std::forward<U>(u);
}
};
/// @brief Default difference functor
struct Difference
{
/// Binary difference operator, returns `t - u`
template <typename T, typename U>
__host__ __device__ __forceinline__ auto operator()(T &&t, U &&u) const
-> decltype(::cuda::std::forward<T>(t) - ::cuda::std::forward<U>(u))
{
return ::cuda::std::forward<T>(t) - ::cuda::std::forward<U>(u);
}
};
/// @brief Default division functor
struct Division
{
/// Binary division operator, returns `t / u`
template <typename T, typename U>
__host__ __device__ __forceinline__ auto operator()(T &&t, U &&u) const
-> decltype(::cuda::std::forward<T>(t) / ::cuda::std::forward<U>(u))
{
return ::cuda::std::forward<T>(t) / ::cuda::std::forward<U>(u);
}
};
#endif
/// @brief Default max functor
struct Max
{
/// Boolean max operator, returns `(t > u) ? t : u`
template <typename T, typename U>
__host__ __device__ __forceinline__
typename ::cuda::std::common_type<T, U>::type
operator()(T &&t, U &&u) const
{
return CUB_MAX(t, u);
}
};
/// @brief Arg max functor (keeps the value and offset of the first occurrence
/// of the larger item)
struct ArgMax
{
/// Boolean max operator, preferring the item having the smaller offset in
/// case of ties
template <typename T, typename OffsetT>
__host__ __device__ __forceinline__ KeyValuePair<OffsetT, T>
operator()(const KeyValuePair<OffsetT, T> &a,
const KeyValuePair<OffsetT, T> &b) const
{
// Mooch BUG (device reduce argmax gk110 3.2 million random fp32)
// return ((b.value > a.value) ||
// ((a.value == b.value) && (b.key < a.key)))
// ? b : a;
if ((b.value > a.value) || ((a.value == b.value) && (b.key < a.key)))
{
return b;
}
return a;
}
};
/// @brief Default min functor
struct Min
{
/// Boolean min operator, returns `(t < u) ? t : u`
template <typename T, typename U>
__host__ __device__ __forceinline__
typename ::cuda::std::common_type<T, U>::type
operator()(T &&t, U &&u) const
{
return CUB_MIN(t, u);
}
};
/// @brief Arg min functor (keeps the value and offset of the first occurrence
/// of the smallest item)
struct ArgMin
{
/// Boolean min operator, preferring the item having the smaller offset in
/// case of ties
template <typename T, typename OffsetT>
__host__ __device__ __forceinline__ KeyValuePair<OffsetT, T>
operator()(const KeyValuePair<OffsetT, T> &a,
const KeyValuePair<OffsetT, T> &b) const
{
// Mooch BUG (device reduce argmax gk110 3.2 million random fp32)
// return ((b.value < a.value) ||
// ((a.value == b.value) && (b.key < a.key)))
// ? b : a;
if ((b.value < a.value) || ((a.value == b.value) && (b.key < a.key)))
{
return b;
}
return a;
}
};
namespace detail
{
template <class OpT>
struct basic_binary_op_t
{
static constexpr bool value = false;
};
template <>
struct basic_binary_op_t<Sum>
{
static constexpr bool value = true;
};
template <>
struct basic_binary_op_t<Min>
{
static constexpr bool value = true;
};
template <>
struct basic_binary_op_t<Max>
{
static constexpr bool value = true;
};
} // namespace detail
/// @brief Default cast functor
template <typename B>
struct CastOp
{
/// Cast operator, returns `(B) a`
template <typename A>
__host__ __device__ __forceinline__ B operator()(A &&a) const
{
return (B)a;
}
};
/// @brief Binary operator wrapper for switching non-commutative scan arguments
template <typename ScanOp>
class SwizzleScanOp
{
private:
/// Wrapped scan operator
ScanOp scan_op;
public:
/// Constructor
__host__ __device__ __forceinline__ SwizzleScanOp(ScanOp scan_op)
: scan_op(scan_op)
{}
/// Switch the scan arguments
template <typename T>
__host__ __device__ __forceinline__ T operator()(const T &a, const T &b)
{
T _a(a);
T _b(b);
return scan_op(_b, _a);
}
};
/**
* @brief Reduce-by-segment functor.
*
* Given two cub::KeyValuePair inputs `a` and `b` and a binary associative
* combining operator `f(const T &x, const T &y)`, an instance of this functor
* returns a cub::KeyValuePair whose `key` field is `a.key + b.key`, and whose
* `value` field is either `b.value` if `b.key` is non-zero, or
* `f(a.value, b.value)` otherwise.
*
* ReduceBySegmentOp is an associative, non-commutative binary combining
* operator for input sequences of cub::KeyValuePair pairings. Such sequences
* are typically used to represent a segmented set of values to be reduced
* and a corresponding set of {0,1}-valued integer "head flags" demarcating the
* first value of each segment.
*
* @tparam ReductionOpT Binary reduction operator to apply to values
*/
template <typename ReductionOpT>
struct ReduceBySegmentOp
{
/// Wrapped reduction operator
ReductionOpT op;
/// Constructor
__host__ __device__ __forceinline__ ReduceBySegmentOp() {}
/// Constructor
__host__ __device__ __forceinline__ ReduceBySegmentOp(ReductionOpT op)
: op(op)
{}
/**
* @brief Scan operator
*
* @tparam KeyValuePairT
* KeyValuePair pairing of T (value) and OffsetT (head flag)
*
* @param[in] first
* First partial reduction
*
* @param[in] second
* Second partial reduction
*/
template <typename KeyValuePairT>
__host__ __device__ __forceinline__ KeyValuePairT
operator()(const KeyValuePairT &first, const KeyValuePairT &second)
{
KeyValuePairT retval;
retval.key = first.key + second.key;
#ifdef _NVHPC_CUDA // WAR bug on nvc++
if (second.key)
{
retval.value = second.value;
}
else
{
// If second.value isn't copied into a temporary here, nvc++ will
// crash while compiling the TestScanByKeyWithLargeTypes test in
// thrust/testing/scan_by_key.cu:
auto v2 = second.value;
retval.value = op(first.value, v2);
}
#else // not nvc++:
// if (second.key) {
// The second partial reduction spans a segment reset, so it's value
// aggregate becomes the running aggregate
// else {
// The second partial reduction does not span a reset, so accumulate both
// into the running aggregate
// }
retval.value = (second.key) ? second.value : op(first.value, second.value);
#endif
return retval;
}
};
/**
* @tparam ReductionOpT Binary reduction operator to apply to values
*/
template <typename ReductionOpT>
struct ReduceByKeyOp
{
/// Wrapped reduction operator
ReductionOpT op;
/// Constructor
__host__ __device__ __forceinline__ ReduceByKeyOp() {}
/// Constructor
__host__ __device__ __forceinline__ ReduceByKeyOp(ReductionOpT op)
: op(op)
{}
/**
* @brief Scan operator
*
* @param[in] first First partial reduction
* @param[in] second Second partial reduction
*/
template <typename KeyValuePairT>
__host__ __device__ __forceinline__ KeyValuePairT
operator()(const KeyValuePairT &first, const KeyValuePairT &second)
{
KeyValuePairT retval = second;
if (first.key == second.key)
{
retval.value = op(first.value, retval.value);
}
return retval;
}
};
template <typename BinaryOpT>
struct BinaryFlip
{
BinaryOpT binary_op;
__device__ __host__ explicit BinaryFlip(BinaryOpT binary_op)
: binary_op(binary_op)
{}
template <typename T, typename U>
__device__ auto
operator()(T &&t, U &&u) -> decltype(binary_op(::cuda::std::forward<U>(u),
::cuda::std::forward<T>(t)))
{
return binary_op(::cuda::std::forward<U>(u), ::cuda::std::forward<T>(t));
}
};
template <typename BinaryOpT>
__device__ __host__ BinaryFlip<BinaryOpT> MakeBinaryFlip(BinaryOpT binary_op)
{
return BinaryFlip<BinaryOpT>(binary_op);
}
/** @} */ // end group UtilModule
CUB_NAMESPACE_END
|