File size: 16,008 Bytes
b944fa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
from enum import Enum
import gc
import numpy as np

import torch
import decord
from diffusers import StableDiffusionInstructPix2PixPipeline, StableDiffusionControlNetPipeline, ControlNetModel, UNet2DConditionModel
from diffusers.schedulers import EulerAncestralDiscreteScheduler, DDIMScheduler
from text_to_video.text_to_video_pipeline import TextToVideoPipeline

import utils
import gradio_utils

decord.bridge.set_bridge('torch')


class ModelType(Enum):
    Pix2Pix_Video = 1,
    Text2Video = 2,
    ControlNetCanny = 3,
    ControlNetCannyDB = 4,
    ControlNetPose = 5,


class Model:
    def __init__(self, device, dtype, **kwargs):
        self.device = device
        self.dtype = dtype
        self.generator = torch.Generator(device=device)
        self.pipe_dict = {
            ModelType.Pix2Pix_Video: StableDiffusionInstructPix2PixPipeline,
            ModelType.Text2Video: TextToVideoPipeline,
            ModelType.ControlNetCanny: StableDiffusionControlNetPipeline,
            ModelType.ControlNetCannyDB: StableDiffusionControlNetPipeline,
            ModelType.ControlNetPose: StableDiffusionControlNetPipeline,
        }
        self.controlnet_attn_proc = utils.CrossFrameAttnProcessor(unet_chunk_size=2)
        self.pix2pix_attn_proc = utils.CrossFrameAttnProcessor(unet_chunk_size=3)
        self.text2video_attn_proc = utils.CrossFrameAttnProcessor(unet_chunk_size=2)

        self.pipe = None
        self.model_type = None

        self.states = {}

    def set_model(self, model_type: ModelType, model_id: str, **kwargs):
        if self.pipe is not None:
            del self.pipe
        torch.cuda.empty_cache()
        gc.collect()
        safety_checker = kwargs.pop('safety_checker', None)
        self.pipe = self.pipe_dict[model_type].from_pretrained(model_id, safety_checker=safety_checker, **kwargs).to(self.device).to(self.dtype)
        self.model_type = model_type

    def inference_chunk(self, frame_ids, **kwargs):
        if self.pipe is None:
            return
        image = kwargs.pop('image')
        prompt = np.array(kwargs.pop('prompt'))
        negative_prompt = np.array(kwargs.pop('negative_prompt', ''))
        latents = None
        if 'latents' in kwargs:
            latents = kwargs.pop('latents')[frame_ids]
        return self.pipe(image=image[frame_ids],
                         prompt=prompt[frame_ids].tolist(),
                         negative_prompt=negative_prompt[frame_ids].tolist(),
                         latents=latents,
                         generator=self.generator,
                         **kwargs)

    def inference(self, split_to_chunks=False, chunk_size=8, **kwargs):
        if self.pipe is None:
            return
        seed = kwargs.pop('seed', 0)
        kwargs.pop('generator', '')
        # self.generator.manual_seed(seed)
        if split_to_chunks:
            assert 'image' in kwargs
            assert 'prompt' in kwargs
            image = kwargs.pop('image')
            prompt = kwargs.pop('prompt')
            negative_prompt = kwargs.pop('negative_prompt', '')
            f = image.shape[0]
            chunk_ids = np.arange(0, f, chunk_size - 1)
            result = []
            for i in range(len(chunk_ids)):
                ch_start = chunk_ids[i]
                ch_end = f if i == len(chunk_ids) - 1 else chunk_ids[i + 1]
                frame_ids = [0] + list(range(ch_start, ch_end))
                self.generator.manual_seed(seed)
                print(f'Processing chunk {i + 1} / {len(chunk_ids)}')
                result.append(self.inference_chunk(frame_ids=frame_ids,
                                                   image=image,
                                                   prompt=[prompt] * f,
                                                   negative_prompt=[negative_prompt] * f,
                                                   **kwargs).images[1:])
            result = np.concatenate(result)
            return result
        else:
            return self.pipe(generator=self.generator, **kwargs).videos[0]

    def process_controlnet_canny(self,
                                 video_path,
                                 prompt,
                                 num_inference_steps=20,
                                 controlnet_conditioning_scale=1.0,
                                 guidance_scale=9.0,
                                 seed=42,
                                 eta=0.0,
                                 low_threshold=100,
                                 high_threshold=200,
                                 resolution=512):
        video_path = gradio_utils.edge_path_to_video_path(video_path)
        if self.model_type != ModelType.ControlNetCanny:
            controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")
            self.set_model(ModelType.ControlNetCanny, model_id="runwayml/stable-diffusion-v1-5", controlnet=controlnet)
            self.pipe.scheduler = DDIMScheduler.from_config(self.pipe.scheduler.config)
            self.pipe.unet.set_attn_processor(processor=self.controlnet_attn_proc)
            self.pipe.controlnet.set_attn_processor(processor=self.controlnet_attn_proc)

        # TODO: Check scheduler
        added_prompt = 'best quality, extremely detailed'
        negative_prompts = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'

        video, fps = utils.prepare_video(video_path, resolution, self.device, self.dtype, False, start_t=0, end_t=15)
        control = utils.pre_process_canny(video, low_threshold, high_threshold).to(self.device).to(self.dtype)
        f, _, h, w = video.shape
        self.generator.manual_seed(seed)
        latents = torch.randn((1, 4, h//8, w//8), dtype=self.dtype, device=self.device, generator=self.generator)
        latents = latents.repeat(f, 1, 1, 1)
        result = self.inference(image=control,
                                prompt=prompt + ', ' + added_prompt,
                                height=h,
                                width=w,
                                negative_prompt=negative_prompts,
                                num_inference_steps=num_inference_steps,
                                guidance_scale=guidance_scale,
                                controlnet_conditioning_scale=controlnet_conditioning_scale,
                                eta=eta,
                                latents=latents,
                                seed=seed,
                                output_type='numpy',
                                split_to_chunks=True,
                                chunk_size=8,
                                )
        return utils.create_video(result, fps)

    def process_controlnet_pose(self,
                                video_path,
                                prompt,
                                num_inference_steps=20,
                                controlnet_conditioning_scale=1.0,
                                guidance_scale=9.0,
                                seed=42,
                                eta=0.0,
                                resolution=512):
        video_path = gradio_utils.motion_to_video_path(video_path)
        if self.model_type != ModelType.ControlNetPose:
            controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-openpose")
            self.set_model(ModelType.ControlNetPose, model_id="runwayml/stable-diffusion-v1-5", controlnet=controlnet)
            self.pipe.scheduler = DDIMScheduler.from_config(self.pipe.scheduler.config)
            self.pipe.unet.set_attn_processor(processor=self.controlnet_attn_proc)
            self.pipe.controlnet.set_attn_processor(processor=self.controlnet_attn_proc)

        added_prompt = 'best quality, extremely detailed, HD, ultra-realistic, 8K, HQ, masterpiece, trending on artstation, art, smooth'
        negative_prompts = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer difits, cropped, worst quality, low quality, deformed body, bloated, ugly, unrealistic'

        video, fps = utils.prepare_video(video_path, resolution, self.device, self.dtype, False, output_fps=4)
        control = utils.pre_process_pose(video, apply_pose_detect=False).to(self.device).to(self.dtype)
        f, _, h, w = video.shape
        self.generator.manual_seed(seed)
        latents = torch.randn((1, 4, h//8, w//8), dtype=self.dtype, device=self.device, generator=self.generator)
        latents = latents.repeat(f, 1, 1, 1)
        result = self.inference(image=control,
                                prompt=prompt + ', ' + added_prompt,
                                height=h,
                                width=w,
                                negative_prompt=negative_prompts,
                                num_inference_steps=num_inference_steps,
                                guidance_scale=guidance_scale,
                                controlnet_conditioning_scale=controlnet_conditioning_scale,
                                eta=eta,
                                latents=latents,
                                seed=seed,
                                output_type='numpy',
                                split_to_chunks=True,
                                chunk_size=8,
                                )
        return utils.create_gif(result, fps)
        # return utils.create_video(result, fps)

    def process_controlnet_canny_db(self,
                                    db_path,
                                    video_path,
                                    prompt,
                                    num_inference_steps=20,
                                    controlnet_conditioning_scale=1.0,
                                    guidance_scale=9.0,
                                    seed=42,
                                    eta=0.0,
                                    low_threshold=100,
                                    high_threshold=200,
                                    resolution=512):
        db_path = gradio_utils.get_model_from_db_selection(db_path)
        video_path = gradio_utils.get_video_from_canny_selection(video_path)
        # Load db and controlnet weights
        if 'db_path' not in self.states or db_path != self.states['db_path']:
            controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")
            self.set_model(ModelType.ControlNetCannyDB, model_id=db_path, controlnet=controlnet)
            self.pipe.scheduler = DDIMScheduler.from_config(self.pipe.scheduler.config)
            self.pipe.unet.set_attn_processor(processor=self.controlnet_attn_proc)
            self.pipe.controlnet.set_attn_processor(processor=self.controlnet_attn_proc)
            self.states['db_path'] = db_path

        added_prompt = 'best quality, extremely detailed'
        negative_prompts = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'

        video, fps = utils.prepare_video(video_path, resolution, self.device, self.dtype, False)
        control = utils.pre_process_canny(video, low_threshold, high_threshold).to(self.device).to(self.dtype)
        f, _, h, w = video.shape
        self.generator.manual_seed(seed)
        latents = torch.randn((1, 4, h//8, w//8), dtype=self.dtype, device=self.device, generator=self.generator)
        latents = latents.repeat(f, 1, 1, 1)
        result = self.inference(image=control,
                                prompt=prompt + ', ' + added_prompt,
                                height=h,
                                width=w,
                                negative_prompt=negative_prompts,
                                num_inference_steps=num_inference_steps,
                                guidance_scale=guidance_scale,
                                controlnet_conditioning_scale=controlnet_conditioning_scale,
                                eta=eta,
                                latents=latents,
                                seed=seed,
                                output_type='numpy',
                                split_to_chunks=True,
                                chunk_size=8,
                                )
        return utils.create_gif(result, fps)

    def process_pix2pix(self, video, prompt, resolution=512, seed=0, start_t=0, end_t=-1, out_fps=-1):
        end_t = start_t+15
        if self.model_type != ModelType.Pix2Pix_Video:
            self.set_model(ModelType.Pix2Pix_Video, model_id="timbrooks/instruct-pix2pix")
            self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config)
            self.pipe.unet.set_attn_processor(processor=self.pix2pix_attn_proc)
        video, fps = utils.prepare_video(video, resolution, self.device, self.dtype, True, start_t, end_t, out_fps)
        self.generator.manual_seed(seed)
        result = self.inference(image=video,
                                prompt=prompt,
                                seed=seed,
                                output_type='numpy',
                                num_inference_steps=50,
                                image_guidance_scale=1.5,
                                split_to_chunks=True,
                                chunk_size=8,
                                )
        return utils.create_video(result, fps)

    def process_text2video(self, prompt, motion_field_strength_x=12,motion_field_strength_y=12, n_prompt="", resolution=512, seed=24, num_frames=8, fps=2, t0=881, t1=941,
                           use_cf_attn=True, use_motion_field=True, 
                           smooth_bg=False, smooth_bg_strength=0.4 ):
        
        if self.model_type != ModelType.Text2Video:
            unet = UNet2DConditionModel.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder="unet")
            self.set_model(ModelType.Text2Video, model_id="runwayml/stable-diffusion-v1-5", unet=unet)
            self.pipe.scheduler = DDIMScheduler.from_config(self.pipe.scheduler.config)
            if use_cf_attn:
                self.pipe.unet.set_attn_processor(processor=self.text2video_attn_proc)
            self.generator.manual_seed(seed)


        added_prompt = "high quality, HD, 8K, trending on artstation, high focus, dramatic lighting"
        negative_prompts = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer difits, cropped, worst quality, low quality, deformed body, bloated, ugly, unrealistic'

        prompt = prompt.rstrip()
        if len(prompt) > 0 and (prompt[-1] == "," or prompt[-1]  == "."):
            prompt = prompt.rstrip()[:-1]
        prompt = prompt.rstrip()
        prompt = prompt + ", "+added_prompt
        if len(n_prompt)>0:
            negative_prompt = [n_prompt]
        else:
            negative_prompt = None

        result = self.inference(prompt=[prompt],
                                video_length=num_frames,
                                height=resolution,
                                width=resolution,
                                num_inference_steps=50,
                                guidance_scale=7.5,
                                guidance_stop_step=1.0,
                                t0=t0,
                                t1=t1,
                                motion_field_strength_x=motion_field_strength_x,
                                motion_field_strength_y=motion_field_strength_y,
                                use_motion_field=use_motion_field,
                                smooth_bg=smooth_bg,
                                smooth_bg_strength=smooth_bg_strength,
                                seed=seed,
                                output_type='numpy',
                                negative_prompt = negative_prompt,
                                )
        return utils.create_video(result, fps)