File size: 8,112 Bytes
3bbb319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
from argparse import ArgumentParser

import mmcv
import numpy as np


def print_coco_results(results):

    def _print(result, ap=1, iouThr=None, areaRng='all', maxDets=100):
        titleStr = 'Average Precision' if ap == 1 else 'Average Recall'
        typeStr = '(AP)' if ap == 1 else '(AR)'
        iouStr = '0.50:0.95' \
            if iouThr is None else f'{iouThr:0.2f}'
        iStr = f' {titleStr:<18} {typeStr} @[ IoU={iouStr:<9} | '
        iStr += f'area={areaRng:>6s} | maxDets={maxDets:>3d} ] = {result:0.3f}'
        print(iStr)

    stats = np.zeros((12, ))
    stats[0] = _print(results[0], 1)
    stats[1] = _print(results[1], 1, iouThr=.5)
    stats[2] = _print(results[2], 1, iouThr=.75)
    stats[3] = _print(results[3], 1, areaRng='small')
    stats[4] = _print(results[4], 1, areaRng='medium')
    stats[5] = _print(results[5], 1, areaRng='large')
    stats[6] = _print(results[6], 0, maxDets=1)
    stats[7] = _print(results[7], 0, maxDets=10)
    stats[8] = _print(results[8], 0)
    stats[9] = _print(results[9], 0, areaRng='small')
    stats[10] = _print(results[10], 0, areaRng='medium')
    stats[11] = _print(results[11], 0, areaRng='large')


def get_coco_style_results(filename,
                           task='bbox',
                           metric=None,
                           prints='mPC',
                           aggregate='benchmark'):

    assert aggregate in ['benchmark', 'all']

    if prints == 'all':
        prints = ['P', 'mPC', 'rPC']
    elif isinstance(prints, str):
        prints = [prints]
    for p in prints:
        assert p in ['P', 'mPC', 'rPC']

    if metric is None:
        metrics = [
            'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'AR1', 'AR10', 'AR100',
            'ARs', 'ARm', 'ARl'
        ]
    elif isinstance(metric, list):
        metrics = metric
    else:
        metrics = [metric]

    for metric_name in metrics:
        assert metric_name in [
            'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'AR1', 'AR10', 'AR100',
            'ARs', 'ARm', 'ARl'
        ]

    eval_output = mmcv.load(filename)

    num_distortions = len(list(eval_output.keys()))
    results = np.zeros((num_distortions, 6, len(metrics)), dtype='float32')

    for corr_i, distortion in enumerate(eval_output):
        for severity in eval_output[distortion]:
            for metric_j, metric_name in enumerate(metrics):
                mAP = eval_output[distortion][severity][task][metric_name]
                results[corr_i, severity, metric_j] = mAP

    P = results[0, 0, :]
    if aggregate == 'benchmark':
        mPC = np.mean(results[:15, 1:, :], axis=(0, 1))
    else:
        mPC = np.mean(results[:, 1:, :], axis=(0, 1))
    rPC = mPC / P

    print(f'\nmodel: {osp.basename(filename)}')
    if metric is None:
        if 'P' in prints:
            print(f'Performance on Clean Data [P] ({task})')
            print_coco_results(P)
        if 'mPC' in prints:
            print(f'Mean Performance under Corruption [mPC] ({task})')
            print_coco_results(mPC)
        if 'rPC' in prints:
            print(f'Relative Performance under Corruption [rPC] ({task})')
            print_coco_results(rPC)
    else:
        if 'P' in prints:
            print(f'Performance on Clean Data [P] ({task})')
            for metric_i, metric_name in enumerate(metrics):
                print(f'{metric_name:5} =  {P[metric_i]:0.3f}')
        if 'mPC' in prints:
            print(f'Mean Performance under Corruption [mPC] ({task})')
            for metric_i, metric_name in enumerate(metrics):
                print(f'{metric_name:5} =  {mPC[metric_i]:0.3f}')
        if 'rPC' in prints:
            print(f'Relative Performance under Corruption [rPC] ({task})')
            for metric_i, metric_name in enumerate(metrics):
                print(f'{metric_name:5} => {rPC[metric_i] * 100:0.1f} %')

    return results


def get_voc_style_results(filename, prints='mPC', aggregate='benchmark'):

    assert aggregate in ['benchmark', 'all']

    if prints == 'all':
        prints = ['P', 'mPC', 'rPC']
    elif isinstance(prints, str):
        prints = [prints]
    for p in prints:
        assert p in ['P', 'mPC', 'rPC']

    eval_output = mmcv.load(filename)

    num_distortions = len(list(eval_output.keys()))
    results = np.zeros((num_distortions, 6, 20), dtype='float32')

    for i, distortion in enumerate(eval_output):
        for severity in eval_output[distortion]:
            mAP = [
                eval_output[distortion][severity][j]['ap']
                for j in range(len(eval_output[distortion][severity]))
            ]
            results[i, severity, :] = mAP

    P = results[0, 0, :]
    if aggregate == 'benchmark':
        mPC = np.mean(results[:15, 1:, :], axis=(0, 1))
    else:
        mPC = np.mean(results[:, 1:, :], axis=(0, 1))
    rPC = mPC / P

    print(f'\nmodel: {osp.basename(filename)}')
    if 'P' in prints:
        print(f'Performance on Clean Data [P] in AP50 = {np.mean(P):0.3f}')
    if 'mPC' in prints:
        print('Mean Performance under Corruption [mPC] in AP50 = '
              f'{np.mean(mPC):0.3f}')
    if 'rPC' in prints:
        print('Relative Performance under Corruption [rPC] in % = '
              f'{np.mean(rPC) * 100:0.1f}')

    return np.mean(results, axis=2, keepdims=True)


def get_results(filename,
                dataset='coco',
                task='bbox',
                metric=None,
                prints='mPC',
                aggregate='benchmark'):
    assert dataset in ['coco', 'voc', 'cityscapes']

    if dataset in ['coco', 'cityscapes']:
        results = get_coco_style_results(
            filename,
            task=task,
            metric=metric,
            prints=prints,
            aggregate=aggregate)
    elif dataset == 'voc':
        if task != 'bbox':
            print('Only bbox analysis is supported for Pascal VOC')
            print('Will report bbox results\n')
        if metric not in [None, ['AP'], ['AP50']]:
            print('Only the AP50 metric is supported for Pascal VOC')
            print('Will report AP50 metric\n')
        results = get_voc_style_results(
            filename, prints=prints, aggregate=aggregate)

    return results


def get_distortions_from_file(filename):

    eval_output = mmcv.load(filename)

    return get_distortions_from_results(eval_output)


def get_distortions_from_results(eval_output):
    distortions = []
    for i, distortion in enumerate(eval_output):
        distortions.append(distortion.replace('_', ' '))
    return distortions


def main():
    parser = ArgumentParser(description='Corruption Result Analysis')
    parser.add_argument('filename', help='result file path')
    parser.add_argument(
        '--dataset',
        type=str,
        choices=['coco', 'voc', 'cityscapes'],
        default='coco',
        help='dataset type')
    parser.add_argument(
        '--task',
        type=str,
        nargs='+',
        choices=['bbox', 'segm'],
        default=['bbox'],
        help='task to report')
    parser.add_argument(
        '--metric',
        nargs='+',
        choices=[
            None, 'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'AR1', 'AR10',
            'AR100', 'ARs', 'ARm', 'ARl'
        ],
        default=None,
        help='metric to report')
    parser.add_argument(
        '--prints',
        type=str,
        nargs='+',
        choices=['P', 'mPC', 'rPC'],
        default='mPC',
        help='corruption benchmark metric to print')
    parser.add_argument(
        '--aggregate',
        type=str,
        choices=['all', 'benchmark'],
        default='benchmark',
        help='aggregate all results or only those \
        for benchmark corruptions')

    args = parser.parse_args()

    for task in args.task:
        get_results(
            args.filename,
            dataset=args.dataset,
            task=task,
            metric=args.metric,
            prints=args.prints,
            aggregate=args.aggregate)


if __name__ == '__main__':
    main()