File size: 19,958 Bytes
f5bb0c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
/*
tests/eigen.cpp -- automatic conversion of Eigen types
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#include <pybind11/eigen/matrix.h>
#include <pybind11/stl.h>
#include "constructor_stats.h"
#include "pybind11_tests.h"
PYBIND11_WARNING_DISABLE_MSVC(4996)
#include <Eigen/Cholesky>
using MatrixXdR = Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
// Sets/resets a testing reference matrix to have values of 10*r + c, where r and c are the
// (1-based) row/column number.
template <typename M>
void reset_ref(M &x) {
for (int i = 0; i < x.rows(); i++) {
for (int j = 0; j < x.cols(); j++) {
x(i, j) = 11 + 10 * i + j;
}
}
}
// Returns a static, column-major matrix
Eigen::MatrixXd &get_cm() {
static Eigen::MatrixXd *x;
if (!x) {
x = new Eigen::MatrixXd(3, 3);
reset_ref(*x);
}
return *x;
}
// Likewise, but row-major
MatrixXdR &get_rm() {
static MatrixXdR *x;
if (!x) {
x = new MatrixXdR(3, 3);
reset_ref(*x);
}
return *x;
}
// Resets the values of the static matrices returned by get_cm()/get_rm()
void reset_refs() {
reset_ref(get_cm());
reset_ref(get_rm());
}
// Returns element 2,1 from a matrix (used to test copy/nocopy)
double get_elem(const Eigen::Ref<const Eigen::MatrixXd> &m) { return m(2, 1); };
// Returns a matrix with 10*r + 100*c added to each matrix element (to help test that the matrix
// reference is referencing rows/columns correctly).
template <typename MatrixArgType>
Eigen::MatrixXd adjust_matrix(MatrixArgType m) {
Eigen::MatrixXd ret(m);
for (int c = 0; c < m.cols(); c++) {
for (int r = 0; r < m.rows(); r++) {
ret(r, c) += 10 * r + 100 * c; // NOLINT(clang-analyzer-core.uninitialized.Assign)
}
}
return ret;
}
struct CustomOperatorNew {
CustomOperatorNew() = default;
Eigen::Matrix4d a = Eigen::Matrix4d::Zero();
Eigen::Matrix4d b = Eigen::Matrix4d::Identity();
EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
};
TEST_SUBMODULE(eigen_matrix, m) {
using FixedMatrixR = Eigen::Matrix<float, 5, 6, Eigen::RowMajor>;
using FixedMatrixC = Eigen::Matrix<float, 5, 6>;
using DenseMatrixR = Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
using DenseMatrixC = Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic>;
using FourRowMatrixC = Eigen::Matrix<float, 4, Eigen::Dynamic>;
using FourColMatrixC = Eigen::Matrix<float, Eigen::Dynamic, 4>;
using FourRowMatrixR = Eigen::Matrix<float, 4, Eigen::Dynamic>;
using FourColMatrixR = Eigen::Matrix<float, Eigen::Dynamic, 4>;
using SparseMatrixR = Eigen::SparseMatrix<float, Eigen::RowMajor>;
using SparseMatrixC = Eigen::SparseMatrix<float>;
// various tests
m.def("double_col", [](const Eigen::VectorXf &x) -> Eigen::VectorXf { return 2.0f * x; });
m.def("double_row",
[](const Eigen::RowVectorXf &x) -> Eigen::RowVectorXf { return 2.0f * x; });
m.def("double_complex",
[](const Eigen::VectorXcf &x) -> Eigen::VectorXcf { return 2.0f * x; });
m.def("double_threec", [](py::EigenDRef<Eigen::Vector3f> x) { x *= 2; });
m.def("double_threer", [](py::EigenDRef<Eigen::RowVector3f> x) { x *= 2; });
m.def("double_mat_cm", [](const Eigen::MatrixXf &x) -> Eigen::MatrixXf { return 2.0f * x; });
m.def("double_mat_rm", [](const DenseMatrixR &x) -> DenseMatrixR { return 2.0f * x; });
// test_eigen_ref_to_python
// Different ways of passing via Eigen::Ref; the first and second are the Eigen-recommended
m.def("cholesky1",
[](const Eigen::Ref<MatrixXdR> &x) -> Eigen::MatrixXd { return x.llt().matrixL(); });
m.def("cholesky2", [](const Eigen::Ref<const MatrixXdR> &x) -> Eigen::MatrixXd {
return x.llt().matrixL();
});
m.def("cholesky3",
[](const Eigen::Ref<MatrixXdR> &x) -> Eigen::MatrixXd { return x.llt().matrixL(); });
m.def("cholesky4", [](const Eigen::Ref<const MatrixXdR> &x) -> Eigen::MatrixXd {
return x.llt().matrixL();
});
// test_eigen_ref_mutators
// Mutators: these add some value to the given element using Eigen, but Eigen should be mapping
// into the numpy array data and so the result should show up there. There are three versions:
// one that works on a contiguous-row matrix (numpy's default), one for a contiguous-column
// matrix, and one for any matrix.
auto add_rm = [](Eigen::Ref<MatrixXdR> x, int r, int c, double v) { x(r, c) += v; };
auto add_cm = [](Eigen::Ref<Eigen::MatrixXd> x, int r, int c, double v) { x(r, c) += v; };
// Mutators (Eigen maps into numpy variables):
m.def("add_rm", add_rm); // Only takes row-contiguous
m.def("add_cm", add_cm); // Only takes column-contiguous
// Overloaded versions that will accept either row or column contiguous:
m.def("add1", add_rm);
m.def("add1", add_cm);
m.def("add2", add_cm);
m.def("add2", add_rm);
// This one accepts a matrix of any stride:
m.def("add_any",
[](py::EigenDRef<Eigen::MatrixXd> x, int r, int c, double v) { x(r, c) += v; });
// Return mutable references (numpy maps into eigen variables)
m.def("get_cm_ref", []() { return Eigen::Ref<Eigen::MatrixXd>(get_cm()); });
m.def("get_rm_ref", []() { return Eigen::Ref<MatrixXdR>(get_rm()); });
// The same references, but non-mutable (numpy maps into eigen variables, but is !writeable)
m.def("get_cm_const_ref", []() { return Eigen::Ref<const Eigen::MatrixXd>(get_cm()); });
m.def("get_rm_const_ref", []() { return Eigen::Ref<const MatrixXdR>(get_rm()); });
m.def("reset_refs", reset_refs); // Restores get_{cm,rm}_ref to original values
// Increments and returns ref to (same) matrix
m.def(
"incr_matrix",
[](Eigen::Ref<Eigen::MatrixXd> m, double v) {
m += Eigen::MatrixXd::Constant(m.rows(), m.cols(), v);
return m;
},
py::return_value_policy::reference);
// Same, but accepts a matrix of any strides
m.def(
"incr_matrix_any",
[](py::EigenDRef<Eigen::MatrixXd> m, double v) {
m += Eigen::MatrixXd::Constant(m.rows(), m.cols(), v);
return m;
},
py::return_value_policy::reference);
// Returns an eigen slice of even rows
m.def(
"even_rows",
[](py::EigenDRef<Eigen::MatrixXd> m) {
return py::EigenDMap<Eigen::MatrixXd>(
m.data(),
(m.rows() + 1) / 2,
m.cols(),
py::EigenDStride(m.outerStride(), 2 * m.innerStride()));
},
py::return_value_policy::reference);
// Returns an eigen slice of even columns
m.def(
"even_cols",
[](py::EigenDRef<Eigen::MatrixXd> m) {
return py::EigenDMap<Eigen::MatrixXd>(
m.data(),
m.rows(),
(m.cols() + 1) / 2,
py::EigenDStride(2 * m.outerStride(), m.innerStride()));
},
py::return_value_policy::reference);
// Returns diagonals: a vector-like object with an inner stride != 1
m.def("diagonal", [](const Eigen::Ref<const Eigen::MatrixXd> &x) { return x.diagonal(); });
m.def("diagonal_1",
[](const Eigen::Ref<const Eigen::MatrixXd> &x) { return x.diagonal<1>(); });
m.def("diagonal_n",
[](const Eigen::Ref<const Eigen::MatrixXd> &x, int index) { return x.diagonal(index); });
// Return a block of a matrix (gives non-standard strides)
m.def("block",
[m](const py::object &x_obj,
int start_row,
int start_col,
int block_rows,
int block_cols) {
return m.attr("_block")(x_obj, x_obj, start_row, start_col, block_rows, block_cols);
});
m.def(
"_block",
[](const py::object &x_obj,
const Eigen::Ref<const Eigen::MatrixXd> &x,
int start_row,
int start_col,
int block_rows,
int block_cols) {
// See PR #4217 for background. This test is a bit over the top, but might be useful
// as a concrete example to point to when explaining the dangling reference trap.
auto i0 = py::make_tuple(0, 0);
auto x0_orig = x_obj[*i0].cast<double>();
if (x(0, 0) != x0_orig) {
throw std::runtime_error(
"Something in the type_caster for Eigen::Ref is terribly wrong.");
}
double x0_mod = x0_orig + 1;
x_obj[*i0] = x0_mod;
auto copy_detected = (x(0, 0) != x0_mod);
x_obj[*i0] = x0_orig;
if (copy_detected) {
throw std::runtime_error("type_caster for Eigen::Ref made a copy.");
}
return x.block(start_row, start_col, block_rows, block_cols);
},
py::keep_alive<0, 1>());
// test_eigen_return_references, test_eigen_keepalive
// return value referencing/copying tests:
class ReturnTester {
Eigen::MatrixXd mat = create();
public:
ReturnTester() { print_created(this); }
~ReturnTester() { print_destroyed(this); }
static Eigen::MatrixXd create() { return Eigen::MatrixXd::Ones(10, 10); }
// NOLINTNEXTLINE(readability-const-return-type)
static const Eigen::MatrixXd createConst() { return Eigen::MatrixXd::Ones(10, 10); }
Eigen::MatrixXd &get() { return mat; }
Eigen::MatrixXd *getPtr() { return &mat; }
const Eigen::MatrixXd &view() { return mat; }
const Eigen::MatrixXd *viewPtr() { return &mat; }
Eigen::Ref<Eigen::MatrixXd> ref() { return mat; }
Eigen::Ref<const Eigen::MatrixXd> refConst() { return mat; }
Eigen::Block<Eigen::MatrixXd> block(int r, int c, int nrow, int ncol) {
return mat.block(r, c, nrow, ncol);
}
Eigen::Block<const Eigen::MatrixXd> blockConst(int r, int c, int nrow, int ncol) const {
return mat.block(r, c, nrow, ncol);
}
py::EigenDMap<Eigen::Matrix2d> corners() {
return py::EigenDMap<Eigen::Matrix2d>(
mat.data(),
py::EigenDStride(mat.outerStride() * (mat.outerSize() - 1),
mat.innerStride() * (mat.innerSize() - 1)));
}
py::EigenDMap<const Eigen::Matrix2d> cornersConst() const {
return py::EigenDMap<const Eigen::Matrix2d>(
mat.data(),
py::EigenDStride(mat.outerStride() * (mat.outerSize() - 1),
mat.innerStride() * (mat.innerSize() - 1)));
}
};
using rvp = py::return_value_policy;
py::class_<ReturnTester>(m, "ReturnTester")
.def(py::init<>())
.def_static("create", &ReturnTester::create)
.def_static("create_const", &ReturnTester::createConst)
.def("get", &ReturnTester::get, rvp::reference_internal)
.def("get_ptr", &ReturnTester::getPtr, rvp::reference_internal)
.def("view", &ReturnTester::view, rvp::reference_internal)
.def("view_ptr", &ReturnTester::view, rvp::reference_internal)
.def("copy_get", &ReturnTester::get) // Default rvp: copy
.def("copy_view", &ReturnTester::view) // "
.def("ref", &ReturnTester::ref) // Default for Ref is to reference
.def("ref_const", &ReturnTester::refConst) // Likewise, but const
.def("ref_safe", &ReturnTester::ref, rvp::reference_internal)
.def("ref_const_safe", &ReturnTester::refConst, rvp::reference_internal)
.def("copy_ref", &ReturnTester::ref, rvp::copy)
.def("copy_ref_const", &ReturnTester::refConst, rvp::copy)
.def("block", &ReturnTester::block)
.def("block_safe", &ReturnTester::block, rvp::reference_internal)
.def("block_const", &ReturnTester::blockConst, rvp::reference_internal)
.def("copy_block", &ReturnTester::block, rvp::copy)
.def("corners", &ReturnTester::corners, rvp::reference_internal)
.def("corners_const", &ReturnTester::cornersConst, rvp::reference_internal);
// test_special_matrix_objects
// Returns a DiagonalMatrix with diagonal (1,2,3,...)
m.def("incr_diag", [](int k) {
Eigen::DiagonalMatrix<int, Eigen::Dynamic> m(k);
for (int i = 0; i < k; i++) {
m.diagonal()[i] = i + 1;
}
return m;
});
// Returns a SelfAdjointView referencing the lower triangle of m
m.def("symmetric_lower",
[](const Eigen::MatrixXi &m) { return m.selfadjointView<Eigen::Lower>(); });
// Returns a SelfAdjointView referencing the lower triangle of m
m.def("symmetric_upper",
[](const Eigen::MatrixXi &m) { return m.selfadjointView<Eigen::Upper>(); });
// Test matrix for various functions below.
Eigen::MatrixXf mat(5, 6);
mat << 0, 3, 0, 0, 0, 11, 22, 0, 0, 0, 17, 11, 7, 5, 0, 1, 0, 11, 0, 0, 0, 0, 0, 11, 0, 0, 14,
0, 8, 11;
// test_fixed, and various other tests
m.def("fixed_r", [mat]() -> FixedMatrixR { return FixedMatrixR(mat); });
// Our Eigen does a hack which respects constness through the numpy writeable flag.
// Therefore, the const return actually affects this type despite being an rvalue.
// NOLINTNEXTLINE(readability-const-return-type)
m.def("fixed_r_const", [mat]() -> const FixedMatrixR { return FixedMatrixR(mat); });
m.def("fixed_c", [mat]() -> FixedMatrixC { return FixedMatrixC(mat); });
m.def("fixed_copy_r", [](const FixedMatrixR &m) -> FixedMatrixR { return m; });
m.def("fixed_copy_c", [](const FixedMatrixC &m) -> FixedMatrixC { return m; });
// test_mutator_descriptors
m.def("fixed_mutator_r", [](const Eigen::Ref<FixedMatrixR> &) {});
m.def("fixed_mutator_c", [](const Eigen::Ref<FixedMatrixC> &) {});
m.def("fixed_mutator_a", [](const py::EigenDRef<FixedMatrixC> &) {});
// test_dense
m.def("dense_r", [mat]() -> DenseMatrixR { return DenseMatrixR(mat); });
m.def("dense_c", [mat]() -> DenseMatrixC { return DenseMatrixC(mat); });
m.def("dense_copy_r", [](const DenseMatrixR &m) -> DenseMatrixR { return m; });
m.def("dense_copy_c", [](const DenseMatrixC &m) -> DenseMatrixC { return m; });
// test_defaults
bool have_numpy = true;
try {
py::module_::import("numpy");
} catch (const py::error_already_set &) {
have_numpy = false;
}
if (have_numpy) {
py::module_::import("numpy");
Eigen::Matrix<double, 3, 3> defaultMatrix = Eigen::Matrix3d::Identity();
m.def(
"defaults_mat", [](const Eigen::Matrix3d &) {}, py::arg("mat") = defaultMatrix);
Eigen::VectorXd defaultVector = Eigen::VectorXd::Ones(32);
m.def(
"defaults_vec", [](const Eigen::VectorXd &) {}, py::arg("vec") = defaultMatrix);
}
// test_sparse, test_sparse_signature
m.def("sparse_r", [mat]() -> SparseMatrixR {
// NOLINTNEXTLINE(clang-analyzer-core.uninitialized.UndefReturn)
return Eigen::SparseView<Eigen::MatrixXf>(mat);
});
m.def("sparse_c",
[mat]() -> SparseMatrixC { return Eigen::SparseView<Eigen::MatrixXf>(mat); });
m.def("sparse_copy_r", [](const SparseMatrixR &m) -> SparseMatrixR { return m; });
m.def("sparse_copy_c", [](const SparseMatrixC &m) -> SparseMatrixC { return m; });
// test_partially_fixed
m.def("partial_copy_four_rm_r", [](const FourRowMatrixR &m) -> FourRowMatrixR { return m; });
m.def("partial_copy_four_rm_c", [](const FourColMatrixR &m) -> FourColMatrixR { return m; });
m.def("partial_copy_four_cm_r", [](const FourRowMatrixC &m) -> FourRowMatrixC { return m; });
m.def("partial_copy_four_cm_c", [](const FourColMatrixC &m) -> FourColMatrixC { return m; });
// test_cpp_casting
// Test that we can cast a numpy object to a Eigen::MatrixXd explicitly
m.def("cpp_copy", [](py::handle m) { return m.cast<Eigen::MatrixXd>()(1, 0); });
m.def("cpp_ref_c", [](py::handle m) { return m.cast<Eigen::Ref<Eigen::MatrixXd>>()(1, 0); });
m.def("cpp_ref_r", [](py::handle m) { return m.cast<Eigen::Ref<MatrixXdR>>()(1, 0); });
m.def("cpp_ref_any",
[](py::handle m) { return m.cast<py::EigenDRef<Eigen::MatrixXd>>()(1, 0); });
// [workaround(intel)] ICC 20/21 breaks with py::arg().stuff, using py::arg{}.stuff works.
// test_nocopy_wrapper
// Test that we can prevent copying into an argument that would normally copy: First a version
// that would allow copying (if types or strides don't match) for comparison:
m.def("get_elem", &get_elem);
// Now this alternative that calls the tells pybind to fail rather than copy:
m.def(
"get_elem_nocopy",
[](const Eigen::Ref<const Eigen::MatrixXd> &m) -> double { return get_elem(m); },
py::arg{}.noconvert());
// Also test a row-major-only no-copy const ref:
m.def(
"get_elem_rm_nocopy",
[](Eigen::Ref<const Eigen::Matrix<long, -1, -1, Eigen::RowMajor>> &m) -> long {
return m(2, 1);
},
py::arg{}.noconvert());
// test_issue738, test_zero_length
// Issue #738: 1×N or N×1 2D matrices were neither accepted nor properly copied with an
// incompatible stride value on the length-1 dimension--but that should be allowed (without
// requiring a copy!) because the stride value can be safely ignored on a size-1 dimension.
// Similarly, 0×N or N×0 matrices were not accepted--again, these should be allowed since
// they contain no data. This particularly affects numpy ≥ 1.23, which sets the strides to
// 0 if any dimension size is 0.
m.def("iss738_f1",
&adjust_matrix<const Eigen::Ref<const Eigen::MatrixXd> &>,
py::arg{}.noconvert());
m.def("iss738_f2",
&adjust_matrix<const Eigen::Ref<const Eigen::Matrix<double, -1, -1, Eigen::RowMajor>> &>,
py::arg{}.noconvert());
// test_issue1105
// Issue #1105: when converting from a numpy two-dimensional (Nx1) or (1xN) value into a dense
// eigen Vector or RowVector, the argument would fail to load because the numpy copy would
// fail: numpy won't broadcast a Nx1 into a 1-dimensional vector.
m.def("iss1105_col", [](const Eigen::VectorXd &) { return true; });
m.def("iss1105_row", [](const Eigen::RowVectorXd &) { return true; });
// test_named_arguments
// Make sure named arguments are working properly:
m.def(
"matrix_multiply",
[](const py::EigenDRef<const Eigen::MatrixXd> &A,
const py::EigenDRef<const Eigen::MatrixXd> &B) -> Eigen::MatrixXd {
if (A.cols() != B.rows()) {
throw std::domain_error("Nonconformable matrices!");
}
return A * B;
},
py::arg("A"),
py::arg("B"));
// test_custom_operator_new
py::class_<CustomOperatorNew>(m, "CustomOperatorNew")
.def(py::init<>())
.def_readonly("a", &CustomOperatorNew::a)
.def_readonly("b", &CustomOperatorNew::b);
// test_eigen_ref_life_support
// In case of a failure (the caster's temp array does not live long enough), creating
// a new array (np.ones(10)) increases the chances that the temp array will be garbage
// collected and/or that its memory will be overridden with different values.
m.def("get_elem_direct", [](const Eigen::Ref<const Eigen::VectorXd> &v) {
py::module_::import("numpy").attr("ones")(10);
return v(5);
});
m.def("get_elem_indirect", [](std::vector<Eigen::Ref<const Eigen::VectorXd>> v) {
py::module_::import("numpy").attr("ones")(10);
return v[0](5);
});
}
|