File size: 4,191 Bytes
be903e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#include "layer/crop.h"
#include "testutil.h"
static int test_crop(const ncnn::Mat& a, int woffset, int hoffset, int doffset, int coffset, const ncnn::Mat& ref)
{
ncnn::ParamDict pd;
pd.set(0, woffset);
pd.set(1, hoffset);
pd.set(13, doffset);
pd.set(2, coffset);
pd.set(3, 0); // outw
pd.set(4, 0); // outh
pd.set(14, 0); // outd
pd.set(5, 0); // outc
pd.set(6, 0); // woffset2
pd.set(7, 0); // hoffset2
pd.set(15, 0); // doffset2
pd.set(8, 0); // coffset2
std::vector<ncnn::Mat> weights(0);
std::vector<ncnn::Mat> ab(2);
ab[0] = a;
ab[1] = ref;
int ret = test_layer<ncnn::Crop>("Crop", pd, weights, ab);
if (ret != 0)
{
fprintf(stderr, "test_crop failed a.dims=%d a=(%d %d %d %d) woffset=%d hoffset=%d doffset=%d coffset=%d ref.dims=%d ref=(%d %d %d %d)\n", a.dims, a.w, a.h, a.d, a.c, woffset, hoffset, doffset, coffset, ref.dims, ref.w, ref.h, ref.d, ref.c);
}
return ret;
}
static int test_crop_2(const ncnn::Mat& a)
{
return 0
|| test_crop(a, 0, 0, 0, 0, a)
|| test_crop(a, 0, 0, 0, 0, ncnn::Mat(27))
|| test_crop(a, 11, 0, 0, 0, ncnn::Mat(7))
|| test_crop(a, 12, 0, 0, 0, ncnn::Mat(12))
|| test_crop(a, 16, 0, 0, 0, ncnn::Mat(16));
}
static int test_crop_5(const ncnn::Mat& a)
{
return 0
|| test_crop(a, 0, 0, 0, 0, a)
|| test_crop(a, 0, 12, 0, 0, ncnn::Mat(8, 7))
|| test_crop(a, 5, 0, 0, 0, ncnn::Mat(7, 27))
|| test_crop(a, 5, 11, 0, 0, ncnn::Mat(5, 12))
|| test_crop(a, 6, 12, 0, 0, ncnn::Mat(4, 16))
|| test_crop(a, 4, 8, 0, 0, ncnn::Mat(6, 7));
}
static int test_crop_8(const ncnn::Mat& a)
{
return 0
|| test_crop(a, 0, 0, 0, 0, a)
|| test_crop(a, 0, 5, 0, 0, ncnn::Mat(6, 6))
|| test_crop(a, 6, 0, 0, 0, ncnn::Mat(8, 8))
|| test_crop(a, 5, 2, 0, 0, ncnn::Mat(6, 3))
|| test_crop(a, 6, 3, 0, 0, ncnn::Mat(8, 4))
|| test_crop(a, 4, 4, 0, 0, ncnn::Mat(7, 5))
|| test_crop(a, 5, 3, 0, 11, ncnn::Mat(7, 3, 7))
|| test_crop(a, 6, 4, 0, 12, ncnn::Mat(6, 4, 12))
|| test_crop(a, 4, 2, 0, 8, ncnn::Mat(5, 5, 16));
}
static int test_crop_11(const ncnn::Mat& a)
{
return 0
|| test_crop(a, 0, 0, 0, 0, a)
|| test_crop(a, 0, 5, 0, 0, ncnn::Mat(6, 6, 6))
|| test_crop(a, 6, 0, 0, 0, ncnn::Mat(8, 8, 8))
|| test_crop(a, 5, 5, 5, 0, ncnn::Mat(6, 6, 6))
|| test_crop(a, 6, 6, 6, 0, ncnn::Mat(8, 8, 8))
|| test_crop(a, 4, 4, 4, 0, ncnn::Mat(5, 5, 5))
|| test_crop(a, 3, 3, 3, 11, ncnn::Mat(3, 3, 3, 7))
|| test_crop(a, 4, 4, 4, 12, ncnn::Mat(6, 6, 6, 12))
|| test_crop(a, 5, 5, 5, 8, ncnn::Mat(8, 8, 8, 16));
}
int main()
{
SRAND(776757);
return 0
|| test_crop_2(RandomMat(112))
|| test_crop_2(RandomMat(126))
|| test_crop_2(RandomMat(127))
|| test_crop_5(RandomMat(20, 48))
|| test_crop_5(RandomMat(15, 36))
|| test_crop_5(RandomMat(16, 33))
|| test_crop_8(RandomMat(20, 20, 48))
|| test_crop_8(RandomMat(15, 15, 36))
|| test_crop_8(RandomMat(16, 16, 33))
|| test_crop_11(RandomMat(20, 20, 20, 48))
|| test_crop_11(RandomMat(15, 15, 15, 36))
|| test_crop_11(RandomMat(16, 16, 16, 33));
}
|