File size: 5,258 Bytes
7873319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#!/usr/bin/env python3

# Copyright (c) 2020-2022, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

import argparse
import os

import numpy as np
import json
import sys
import math
import cv2
import glob

def parse_args():
	parser = argparse.ArgumentParser(description="convert a dataset from the nsvf paper format to nerf format transforms.json")

	parser.add_argument("--aabb_scale", default=1, help="large scene scale factor")
	parser.add_argument("--white_transparent", action="store_true", help="White is transparent")
	parser.add_argument("--black_transparent", action="store_true", help="White is transparent")
	args = parser.parse_args()
	return args

def variance_of_laplacian(image):
	return cv2.Laplacian(image, cv2.CV_64F).var()

def sharpness(imagePath):
	image = cv2.imread(imagePath)
	gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
	fm = variance_of_laplacian(gray)
	return fm

if __name__ == "__main__":
	args = parse_args()
	AABB_SCALE = int(args.aabb_scale)
	SKIP_EARLY = 0
	IMAGE_FOLDER = "."
	img_files = [[],[],[]]
	img_files[0] = sorted(glob.glob(os.path.join(IMAGE_FOLDER, "rgb", f"0_*.png")))
	img_files[1] = sorted(glob.glob(os.path.join(IMAGE_FOLDER, "rgb", f"1_*.png")))
	img_files[2] = sorted(glob.glob(os.path.join(IMAGE_FOLDER, "rgb", f"2_*.png")))
	xx = open("bbox.txt").readline().strip().split(" ")
	xx = [x for x in xx if x] # remove empty elements
	bbox = tuple(map(float,xx))

	image = cv2.imread(img_files[0][0],cv2.IMREAD_UNCHANGED)
	w = image.shape[1]
	h = image.shape[0]
	if (image.shape[2] == 3 or (image.shape[2] == 4 and image[0][0][3] != 0)):
		x = w-1
		if (image[0][0][0] == 0 and image[0][0][1] == 0 and image[0][0][2] == 0):
			print("black opaque background detected")
			args.black_transparent=True
		elif (image[0][0][0] == 255 and image[0][0][1] == 255 and image[0][0][2] == 255):
			print("white opaque background detected")
			args.white_transparent=True
		elif (image[0][x][0] == 0 and image[0][x][1] == 0 and image[0][x][2] == 0):
			print("black opaque background detected")
			args.black_transparent=True
		elif (image[0][x][0] == 255 and image[0][x][1] == 255 and image[0][x][2] == 255):
			print("white opaque background detected")
			args.white_transparent=True
		else:
			print("cant detect background")
			exit()
	elif (image.shape[2] == 4):
		print("transparent alpha channel detected, first pixel alpha = ", image[0][0][3])

	lines = map(str.strip,open("intrinsics.txt","r").readlines())
	els = tuple(map(float, " ".join(lines).split(" ")))
	print(els)
	if len(els) == 11:
		fl_x = els[0]
		fl_y = els[0]
		cx = els[1]
		cy = els[2]
	elif len(els) == 16:
		angle_x=math.pi/2
		fl_x = els[0]
		fl_y = els[5]
		cx = els[2]
		cy = els[6]
	else:
		print("dont understand intrinsics file", els)
		exit()
	# fl = 0.5 * w / tan(0.5 * angle_x);
	angle_x = math.atan(w/(fl_x*2))*2
	angle_y = math.atan(h/(fl_y*2))*2
	fovx = angle_x*180/math.pi
	fovy = angle_y*180/math.pi
	k1 = 0
	k2 = 0
	p1 = 0
	p2 = 0

	print(f"camera:\n\tres={w,h}\n\tcenter={cx,cy}\n\tfocal={fl_x,fl_y}\n\tfov={fovx,fovy}\n\tk={k1,k2} p={p1,p2}")
	centroid = [(bbox[0]+bbox[3])*0.5,(bbox[1]+bbox[4])*0.5,(bbox[2]+bbox[5])*0.5]
	print("bbox is ", bbox)
	print("centroid is ", centroid)
	radius = [(bbox[3]-bbox[0])*0.5,(bbox[4]-bbox[1])*0.5,(bbox[5]-bbox[2])*0.5]
	scale = 0.5/np.max(radius)
	print("radius is ", np.max(radius))

	for itype in [0,1,2]:
		if (img_files[2]):
			OUT_PATH = ["transforms_train.json", "transforms_val.json", "transforms_test.json"][itype]
		else:
			OUT_PATH = ["transforms_train.json", "transforms_test.json", ""][itype]
		if OUT_PATH == "":
			break
		out = {
			"camera_angle_x": angle_x,
			"camera_angle_y": angle_y,
			"fl_x": fl_x,
			"fl_y": fl_y,
			"k1": k1,
			"k2": k2,
			"p1": p1,
			"p2": p2,
			"cx": cx,
			"cy": cy,
			"w": w,
			"h": h,
			"scale": 1,
			"white_transparent": args.white_transparent,
			"black_transparent": args.black_transparent,
			"aabb_scale": AABB_SCALE,"frames":[]
		}
		for img_f in img_files[itype]:
			pose_f = os.path.join(IMAGE_FOLDER,"pose",os.path.splitext(os.path.basename(img_f))[0]+".txt")
			elems = tuple(map(float," ".join(open(pose_f).readlines()).split(" ")))
			name = img_f
			m = np.array(elems).reshape(4,4)
			b = sharpness(name)
			#print(name, "sharpness=",b)
			c2w = m # np.linalg.inv(m)
			c2w[0:3,3] -= centroid
			c2w[0:3,3] *= scale
			#print(name,c2w)
			c2w[0:3,2] *= -1 # flip the y and z axis
			c2w[0:3,1] *= -1
			c2w = c2w[[0,2,1,3],:] # swap y and z 012 201 102
			c2w[2,:] *= -1 # flip whole world upside down

			frame = {"file_path": name, "sharpness": b, "transform_matrix": c2w}
			out["frames"].append(frame)

		nframes = len(out["frames"])


		for f in out["frames"]:
			f["transform_matrix"] = f["transform_matrix"].tolist()
		print(nframes,"frames")
		print(f"writing {OUT_PATH}...")
		with open(OUT_PATH, "w") as outfile:
			json.dump(out, outfile, indent=2)