File size: 12,043 Bytes
7873319 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
#!/usr/bin/env python3
# Copyright (c) 2020-2022, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import argparse
import os
from pathlib import Path, PurePosixPath
import numpy as np
import json
import sys
import math
import cv2
import os
import shutil
def parse_args():
parser = argparse.ArgumentParser(description="convert a text colmap export to nerf format transforms.json; optionally convert video to images, and optionally run colmap in the first place")
parser.add_argument("--video_in", default="", help="run ffmpeg first to convert a provided video file into a set of images. uses the video_fps parameter also")
parser.add_argument("--video_fps", default=2)
parser.add_argument("--time_slice", default="", help="time (in seconds) in the format t1,t2 within which the images should be generated from the video. eg: \"--time_slice '10,300'\" will generate images only from 10th second to 300th second of the video")
parser.add_argument("--run_colmap", action="store_true", help="run colmap first on the image folder")
parser.add_argument("--colmap_matcher", default="sequential", choices=["exhaustive","sequential","spatial","transitive","vocab_tree"], help="select which matcher colmap should use. sequential for videos, exhaustive for adhoc images")
parser.add_argument("--colmap_db", default="colmap.db", help="colmap database filename")
parser.add_argument("--colmap_camera_model", default="OPENCV", choices=["SIMPLE_PINHOLE", "PINHOLE", "SIMPLE_RADIAL", "RADIAL","OPENCV"], help="camera model")
parser.add_argument("--colmap_camera_params", default="", help="intrinsic parameters, depending on the chosen model. Format: fx,fy,cx,cy,dist")
parser.add_argument("--images", default="images", help="input path to the images")
parser.add_argument("--text", default="colmap_text", help="input path to the colmap text files (set automatically if run_colmap is used)")
parser.add_argument("--aabb_scale", default=16, choices=["1", "2", "4", "8", "16", "32", "64", "128"], help="large scene scale factor. 1=scene fits in unit cube; power of 2 up to 16")
parser.add_argument("--skip_early", default=0, help="skip this many images from the start")
parser.add_argument("--keep_colmap_coords", action="store_true", help="keep transforms.json in COLMAP's original frame of reference (this will avoid reorienting and repositioning the scene for preview and rendering)")
parser.add_argument("--out", default="transforms.json", help="output path")
parser.add_argument("--vocab_path", default="", help="vocabulary tree path")
args = parser.parse_args()
return args
def do_system(arg):
print(f"==== running: {arg}")
err = os.system(arg)
if err:
print("FATAL: command failed")
sys.exit(err)
def run_ffmpeg(args):
if not os.path.isabs(args.images):
args.images = os.path.join(os.path.dirname(args.video_in), args.images)
images = "\"" + args.images + "\""
video = "\"" + args.video_in + "\""
fps = float(args.video_fps) or 1.0
print(f"running ffmpeg with input video file={video}, output image folder={images}, fps={fps}.")
if (input(f"warning! folder '{images}' will be deleted/replaced. continue? (Y/n)").lower().strip()+"y")[:1] != "y":
sys.exit(1)
try:
# Passing Images' Path Without Double Quotes
shutil.rmtree(args.images)
except:
pass
do_system(f"mkdir {images}")
time_slice_value = ""
time_slice = args.time_slice
if time_slice:
start, end = time_slice.split(",")
time_slice_value = f",select='between(t\,{start}\,{end})'"
do_system(f"ffmpeg -i {video} -qscale:v 1 -qmin 1 -vf \"fps={fps}{time_slice_value}\" {images}/%04d.jpg")
def run_colmap(args):
db = args.colmap_db
images = "\"" + args.images + "\""
db_noext=str(Path(db).with_suffix(""))
if args.text=="text":
args.text=db_noext+"_text"
text=args.text
sparse=db_noext+"_sparse"
print(f"running colmap with:\n\tdb={db}\n\timages={images}\n\tsparse={sparse}\n\ttext={text}")
if (input(f"warning! folders '{sparse}' and '{text}' will be deleted/replaced. continue? (Y/n)").lower().strip()+"y")[:1] != "y":
sys.exit(1)
if os.path.exists(db):
os.remove(db)
do_system(f"colmap feature_extractor --ImageReader.camera_model {args.colmap_camera_model} --ImageReader.camera_params \"{args.colmap_camera_params}\" --SiftExtraction.estimate_affine_shape=true --SiftExtraction.domain_size_pooling=true --ImageReader.single_camera 1 --database_path {db} --image_path {images}")
match_cmd = f"colmap {args.colmap_matcher}_matcher --SiftMatching.guided_matching=true --database_path {db}"
if args.vocab_path:
match_cmd += f" --VocabTreeMatching.vocab_tree_path {args.vocab_path}"
do_system(match_cmd)
try:
shutil.rmtree(sparse)
except:
pass
do_system(f"mkdir {sparse}")
do_system(f"colmap mapper --database_path {db} --image_path {images} --output_path {sparse}")
do_system(f"colmap bundle_adjuster --input_path {sparse}/0 --output_path {sparse}/0 --BundleAdjustment.refine_principal_point 1")
try:
shutil.rmtree(text)
except:
pass
do_system(f"mkdir {text}")
do_system(f"colmap model_converter --input_path {sparse}/0 --output_path {text} --output_type TXT")
def variance_of_laplacian(image):
return cv2.Laplacian(image, cv2.CV_64F).var()
def sharpness(imagePath):
image = cv2.imread(imagePath)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
fm = variance_of_laplacian(gray)
return fm
def qvec2rotmat(qvec):
return np.array([
[
1 - 2 * qvec[2]**2 - 2 * qvec[3]**2,
2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3],
2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2]
], [
2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3],
1 - 2 * qvec[1]**2 - 2 * qvec[3]**2,
2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1]
], [
2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2],
2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1],
1 - 2 * qvec[1]**2 - 2 * qvec[2]**2
]
])
def rotmat(a, b):
a, b = a / np.linalg.norm(a), b / np.linalg.norm(b)
v = np.cross(a, b)
c = np.dot(a, b)
# handle exception for the opposite direction input
if c < -1 + 1e-10:
return rotmat(a + np.random.uniform(-1e-2, 1e-2, 3), b)
s = np.linalg.norm(v)
kmat = np.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]])
return np.eye(3) + kmat + kmat.dot(kmat) * ((1 - c) / (s ** 2 + 1e-10))
def closest_point_2_lines(oa, da, ob, db): # returns point closest to both rays of form o+t*d, and a weight factor that goes to 0 if the lines are parallel
da = da / np.linalg.norm(da)
db = db / np.linalg.norm(db)
c = np.cross(da, db)
denom = np.linalg.norm(c)**2
t = ob - oa
ta = np.linalg.det([t, db, c]) / (denom + 1e-10)
tb = np.linalg.det([t, da, c]) / (denom + 1e-10)
if ta > 0:
ta = 0
if tb > 0:
tb = 0
return (oa+ta*da+ob+tb*db) * 0.5, denom
if __name__ == "__main__":
args = parse_args()
if args.video_in != "":
run_ffmpeg(args)
if args.run_colmap:
run_colmap(args)
AABB_SCALE = int(args.aabb_scale)
SKIP_EARLY = int(args.skip_early)
IMAGE_FOLDER = args.images
TEXT_FOLDER = args.text
OUT_PATH = args.out
print(f"outputting to {OUT_PATH}...")
with open(os.path.join(TEXT_FOLDER,"cameras.txt"), "r") as f:
angle_x = math.pi / 2
for line in f:
# 1 SIMPLE_RADIAL 2048 1536 1580.46 1024 768 0.0045691
# 1 OPENCV 3840 2160 3178.27 3182.09 1920 1080 0.159668 -0.231286 -0.00123982 0.00272224
# 1 RADIAL 1920 1080 1665.1 960 540 0.0672856 -0.0761443
if line[0] == "#":
continue
els = line.split(" ")
w = float(els[2])
h = float(els[3])
fl_x = float(els[4])
fl_y = float(els[4])
k1 = 0
k2 = 0
p1 = 0
p2 = 0
cx = w / 2
cy = h / 2
if els[1] == "SIMPLE_PINHOLE":
cx = float(els[5])
cy = float(els[6])
elif els[1] == "PINHOLE":
fl_y = float(els[5])
cx = float(els[6])
cy = float(els[7])
elif els[1] == "SIMPLE_RADIAL":
cx = float(els[5])
cy = float(els[6])
k1 = float(els[7])
elif els[1] == "RADIAL":
cx = float(els[5])
cy = float(els[6])
k1 = float(els[7])
k2 = float(els[8])
elif els[1] == "OPENCV":
fl_y = float(els[5])
cx = float(els[6])
cy = float(els[7])
k1 = float(els[8])
k2 = float(els[9])
p1 = float(els[10])
p2 = float(els[11])
else:
print("unknown camera model ", els[1])
# fl = 0.5 * w / tan(0.5 * angle_x);
angle_x = math.atan(w / (fl_x * 2)) * 2
angle_y = math.atan(h / (fl_y * 2)) * 2
fovx = angle_x * 180 / math.pi
fovy = angle_y * 180 / math.pi
print(f"camera:\n\tres={w,h}\n\tcenter={cx,cy}\n\tfocal={fl_x,fl_y}\n\tfov={fovx,fovy}\n\tk={k1,k2} p={p1,p2} ")
with open(os.path.join(TEXT_FOLDER,"images.txt"), "r") as f:
i = 0
bottom = np.array([0.0, 0.0, 0.0, 1.0]).reshape([1, 4])
out = {
"camera_angle_x": angle_x,
"camera_angle_y": angle_y,
"fl_x": fl_x,
"fl_y": fl_y,
"k1": k1,
"k2": k2,
"p1": p1,
"p2": p2,
"cx": cx,
"cy": cy,
"w": w,
"h": h,
"aabb_scale": AABB_SCALE,
"frames": [],
}
up = np.zeros(3)
for line in f:
line = line.strip()
if line[0] == "#":
continue
i = i + 1
if i < SKIP_EARLY*2:
continue
if i % 2 == 1:
elems=line.split(" ") # 1-4 is quat, 5-7 is trans, 9ff is filename (9, if filename contains no spaces)
#name = str(PurePosixPath(Path(IMAGE_FOLDER, elems[9])))
# why is this requireing a relitive path while using ^
image_rel = os.path.relpath(IMAGE_FOLDER)
name = str(f"./{image_rel}/{'_'.join(elems[9:])}")
b=sharpness(name)
print(name, "sharpness=",b)
image_id = int(elems[0])
qvec = np.array(tuple(map(float, elems[1:5])))
tvec = np.array(tuple(map(float, elems[5:8])))
R = qvec2rotmat(-qvec)
t = tvec.reshape([3,1])
m = np.concatenate([np.concatenate([R, t], 1), bottom], 0)
c2w = np.linalg.inv(m)
if not args.keep_colmap_coords:
c2w[0:3,2] *= -1 # flip the y and z axis
c2w[0:3,1] *= -1
c2w = c2w[[1,0,2,3],:] # swap y and z
c2w[2,:] *= -1 # flip whole world upside down
up += c2w[0:3,1]
frame={"file_path":name,"sharpness":b,"transform_matrix": c2w}
out["frames"].append(frame)
nframes = len(out["frames"])
if args.keep_colmap_coords:
flip_mat = np.array([
[1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, 1]
])
for f in out["frames"]:
f["transform_matrix"] = np.matmul(f["transform_matrix"], flip_mat) # flip cameras (it just works)
else:
# don't keep colmap coords - reorient the scene to be easier to work with
up = up / np.linalg.norm(up)
print("up vector was", up)
R = rotmat(up,[0,0,1]) # rotate up vector to [0,0,1]
R = np.pad(R,[0,1])
R[-1, -1] = 1
for f in out["frames"]:
f["transform_matrix"] = np.matmul(R, f["transform_matrix"]) # rotate up to be the z axis
# find a central point they are all looking at
print("computing center of attention...")
totw = 0.0
totp = np.array([0.0, 0.0, 0.0])
for f in out["frames"]:
mf = f["transform_matrix"][0:3,:]
for g in out["frames"]:
mg = g["transform_matrix"][0:3,:]
p, w = closest_point_2_lines(mf[:,3], mf[:,2], mg[:,3], mg[:,2])
if w > 0.00001:
totp += p*w
totw += w
if totw > 0.0:
totp /= totw
print(totp) # the cameras are looking at totp
for f in out["frames"]:
f["transform_matrix"][0:3,3] -= totp
avglen = 0.
for f in out["frames"]:
avglen += np.linalg.norm(f["transform_matrix"][0:3,3])
avglen /= nframes
print("avg camera distance from origin", avglen)
for f in out["frames"]:
f["transform_matrix"][0:3,3] *= 4.0 / avglen # scale to "nerf sized"
for f in out["frames"]:
f["transform_matrix"] = f["transform_matrix"].tolist()
print(nframes,"frames")
print(f"writing {OUT_PATH}")
with open(OUT_PATH, "w") as outfile:
json.dump(out, outfile, indent=2)
|