File size: 7,589 Bytes
2b5a2b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2019 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#ifndef CERES_PUBLIC_GRADIENT_PROBLEM_H_
#define CERES_PUBLIC_GRADIENT_PROBLEM_H_
#include <memory>
#include "ceres/first_order_function.h"
#include "ceres/internal/disable_warnings.h"
#include "ceres/internal/export.h"
#include "ceres/local_parameterization.h"
#include "ceres/manifold.h"
namespace ceres {
class FirstOrderFunction;
// Instances of GradientProblem represent general non-linear
// optimization problems that must be solved using just the value of
// the objective function and its gradient.
// Unlike the Problem class, which can only be used to model non-linear least
// squares problems, instances of GradientProblem are not restricted in the form
// of the objective function.
//
// Structurally GradientProblem is a composition of a FirstOrderFunction and
// optionally a Manifold.
//
// The FirstOrderFunction is responsible for evaluating the cost and gradient of
// the objective function.
//
// The Manifold is responsible for going back and forth between the ambient
// space and the local tangent space. (See manifold.h for more details). When a
// Manifold is not provided, then the tangent space is assumed to coincide with
// the ambient Euclidean space that the gradient vector lives in.
//
// Example usage:
//
// The following demonstrate the problem construction for Rosenbrock's function
//
// f(x,y) = (1-x)^2 + 100(y - x^2)^2;
//
// class Rosenbrock : public ceres::FirstOrderFunction {
// public:
// virtual ~Rosenbrock() {}
//
// virtual bool Evaluate(const double* parameters,
// double* cost,
// double* gradient) const {
// const double x = parameters[0];
// const double y = parameters[1];
//
// cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x);
// if (gradient != nullptr) {
// gradient[0] = -2.0 * (1.0 - x) - 200.0 * (y - x * x) * 2.0 * x;
// gradient[1] = 200.0 * (y - x * x);
// }
// return true;
// };
//
// virtual int NumParameters() const { return 2; };
// };
//
// ceres::GradientProblem problem(new Rosenbrock());
//
// NOTE: We are currently in the process of transitioning from
// LocalParameterization to Manifolds in the Ceres API. During this period,
// GradientProblem will support using both Manifold and LocalParameterization
// objects interchangably. For methods in the API affected by this change, see
// their documentation below.
class CERES_EXPORT GradientProblem {
public:
// Takes ownership of the function.
explicit GradientProblem(FirstOrderFunction* function);
// Takes ownership of the function and the parameterization.
//
// NOTE: This constructor is deprecated and will be removed in the next public
// release of Ceres Solver. Please move to using the Manifold based
// constructor.
CERES_DEPRECATED_WITH_MSG(
"LocalParameterizations are deprecated. Please use the constructor that "
"uses Manifold instead.")
GradientProblem(FirstOrderFunction* function,
LocalParameterization* parameterization);
// Takes ownership of the function and the manifold.
GradientProblem(FirstOrderFunction* function, Manifold* manifold);
int NumParameters() const;
// Dimension of the manifold (and its tangent space).
//
// During the transition from LocalParameterization to Manifold, this method
// reports the LocalSize of the LocalParameterization or the TangentSize of
// the Manifold object associated with this problem.
int NumTangentParameters() const;
// Dimension of the manifold (and its tangent space).
//
// NOTE: This method is deprecated and will be removed in the next public
// release of Ceres Solver. Please move to using NumTangentParameters()
// instead.
int NumLocalParameters() const { return NumTangentParameters(); }
// This call is not thread safe.
bool Evaluate(const double* parameters, double* cost, double* gradient) const;
bool Plus(const double* x, const double* delta, double* x_plus_delta) const;
const FirstOrderFunction* function() const { return function_.get(); }
FirstOrderFunction* mutable_function() { return function_.get(); }
// NOTE: During the transition from LocalParameterization to Manifold we need
// to support both The LocalParameterization and Manifold based constructors.
//
// When the user uses the LocalParameterization, internally the solver will
// wrap it in a ManifoldAdapter object and return it when manifold or
// mutable_manifold are called.
//
// As a result this method will return a non-nullptr result if a Manifold or a
// LocalParameterization was used when constructing the GradientProblem.
const Manifold* manifold() const { return manifold_.get(); }
Manifold* mutable_manifold() { return manifold_.get(); }
// If the problem is constructed without a LocalParameterization or with a
// Manifold this method will return a nullptr.
//
// NOTE: This method is deprecated and will be removed in the next public
// release of Ceres Solver.
CERES_DEPRECATED_WITH_MSG("Use Manifolds instead.")
const LocalParameterization* parameterization() const {
return parameterization_.get();
}
// If the problem is constructed without a LocalParameterization or with a
// Manifold this method will return a nullptr.
//
// NOTE: This method is deprecated and will be removed in the next public
// release of Ceres Solver.
CERES_DEPRECATED_WITH_MSG("Use Manifolds instead.")
LocalParameterization* mutable_parameterization() {
return parameterization_.get();
}
private:
std::unique_ptr<FirstOrderFunction> function_;
CERES_DEPRECATED_WITH_MSG("")
std::unique_ptr<LocalParameterization> parameterization_;
std::unique_ptr<Manifold> manifold_;
std::unique_ptr<double[]> scratch_;
};
} // namespace ceres
#include "ceres/internal/reenable_warnings.h"
#endif // CERES_PUBLIC_GRADIENT_PROBLEM_H_
|