File size: 22,163 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 |
{
"cells": [
{
"cell_type": "markdown",
"id": "4eebf3f6",
"metadata": {},
"source": [
"# FastPitch and Mixer-TTS Training\n",
"\n",
"This notebook is designed to provide a guide on how to train FastPitch and Mixer-TTS as part of the TTS pipeline. It contains the following sections:\n",
" 1. **Introduction**: FastPitch and Mixer-TTS in NeMo\n",
" 2. **Preprocessing**: how to prepare data for FastPitch and Mixer-TTS \n",
" 3. **Training**: example of FastPitch training and Mixer-TTS training"
]
},
{
"cell_type": "markdown",
"id": "37074ede",
"metadata": {},
"source": [
"# License\n",
"\n",
"> Copyright 2022 NVIDIA. All Rights Reserved.\n",
"> \n",
"> Licensed under the Apache License, Version 2.0 (the \"License\");\n",
"> you may not use this file except in compliance with the License.\n",
"> You may obtain a copy of the License at\n",
"> \n",
"> http://www.apache.org/licenses/LICENSE-2.0\n",
"> \n",
"> Unless required by applicable law or agreed to in writing, software\n",
"> distributed under the License is distributed on an \"AS IS\" BASIS,\n",
"> WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
"> See the License for the specific language governing permissions and\n",
"> limitations under the License."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "261df0a0",
"metadata": {},
"outputs": [],
"source": [
"\"\"\"\n",
"You can either run this notebook locally (if you have all the dependencies and a GPU) or on Google Colab.\n",
"Instructions for setting up Colab are as follows:\n",
"1. Open a new Python 3 notebook.\n",
"2. Import this notebook from GitHub (File -> Upload Notebook -> \"GITHUB\" tab -> copy/paste GitHub URL)\n",
"3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator)\n",
"4. Run this cell to set up dependencies# .\n",
"\"\"\"\n",
"BRANCH = 'r1.17.0'\n",
"# # If you're using Colab and not running locally, uncomment and run this cell.\n",
"# !apt-get install sox libsndfile1 ffmpeg\n",
"# !pip install wget text-unidecode scipy==1.7.3\n",
"# !python -m pip install git+https://github.com/NVIDIA/NeMo.git@$BRANCH#egg=nemo_toolkit[all]\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9e0c0d38",
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"import nemo\n",
"import torch\n",
"import librosa\n",
"import numpy as np\n",
"\n",
"from pathlib import Path\n",
"from tqdm.notebook import tqdm"
]
},
{
"cell_type": "markdown",
"id": "efa2c292",
"metadata": {},
"source": [
"# Introduction"
]
},
{
"cell_type": "markdown",
"id": "95884fcd",
"metadata": {},
"source": [
"### FastPitch\n",
"\n",
"FastPitch is non-autoregressive model for mel-spectrogram generation based on FastSpeech, conditioned on fundamental frequency contours. For more details about model, please refer to the original [paper](https://arxiv.org/abs/2006.06873). NeMo re-implementation of FastPitch additionally uses unsupervised speech-text [aligner](https://arxiv.org/abs/2108.10447) which was originally implemented in [FastPitch 1.1](https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/FastPitch).\n",
"\n",
"### Mixer-TTS\n",
"\n",
"Mixer-TTS is another non-autoregressive model for mel-spectrogram generation. It is structurally similar to FastPitch: duration prediction, pitch prediction, unsupervised TTS alignment framework, but the main difference is that Mixer-TTS is based on the [MLP-Mixer](https://arxiv.org/abs/2105.01601) architecture adapted for speech synthesis.\n",
"\n",
"FastPitch and Mixer-TTS like most NeMo models are defined as a LightningModule, allowing for easy training via PyTorch Lightning, and parameterized by a configuration, currently defined via a yaml file and loading using Hydra.\n",
"\n",
"Let's take a look using NeMo's pretrained models and how to use it to generate spectrograms."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9be422ee",
"metadata": {},
"outputs": [],
"source": [
"from nemo.collections.tts.models.base import SpectrogramGenerator\n",
"from nemo.collections.tts.models import FastPitchModel, MixerTTSModel\n",
"\n",
"from matplotlib.pyplot import imshow\n",
"from matplotlib import pyplot as plt\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cdf4aee7",
"metadata": {},
"outputs": [],
"source": [
"# Let's see what pretrained models are available for FastPitch and Mixer-TTS\n",
"print(\"FastPitch pretrained models:\")\n",
"print(FastPitchModel.list_available_models())\n",
"print(\"=====================================\")\n",
"print(\"Mixer-TTS pretrained models:\")\n",
"print(MixerTTSModel.list_available_models())"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "298704c4",
"metadata": {},
"outputs": [],
"source": [
"# We can load the pre-trained FastModel as follows\n",
"pretrained_model = \"tts_en_fastpitch\"\n",
"spec_gen = FastPitchModel.from_pretrained(pretrained_model)\n",
"spec_gen.eval();"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c18181ff",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"# In the same way, we can load the pre-trained Mixer-TTS model as follows\n",
"pretrained_model = \"tts_en_lj_mixertts\"\n",
"spec_gen = MixerTTSModel.from_pretrained(pretrained_model)\n",
"spec_gen.eval();"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fb41b646",
"metadata": {},
"outputs": [],
"source": [
"assert isinstance(spec_gen, SpectrogramGenerator)\n",
"\n",
"if isinstance(spec_gen, FastPitchModel):\n",
" tokens = spec_gen.parse(str_input=\"Hey, this produces speech!\")\n",
"else:\n",
" tokens = spec_gen.parse(text=\"Hey, this produces speech!\")\n",
"\n",
"spectrogram = spec_gen.generate_spectrogram(tokens=tokens)\n",
"\n",
"# Now we can visualize the generated spectrogram\n",
"# If we want to generate speech, we have to use a vocoder in conjunction to a spectrogram generator.\n",
"# Refer to the Inference_ModelSelect notebook on how to convert spectrograms to speech.\n",
"imshow(spectrogram.cpu().detach().numpy()[0,...], origin=\"lower\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "54ec3c5e",
"metadata": {},
"source": [
"# Preprocessing"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7ef87e31",
"metadata": {},
"outputs": [],
"source": [
"from nemo.collections.tts.g2p.modules import EnglishG2p\n",
"from nemo.collections.tts.data.tts_dataset import TTSDataset\n",
"from nemo_text_processing.text_normalization.normalize import Normalizer\n",
"from nemo.collections.common.tokenizers.text_to_speech.tts_tokenizers import EnglishPhonemesTokenizer, EnglishCharsTokenizer"
]
},
{
"cell_type": "markdown",
"id": "9fd5dec0",
"metadata": {},
"source": [
"We will show example of preprocessing and training using small part of AN4 dataset. It consists of recordings of people spelling out addresses, names, telephone numbers, etc., one letter or number at a time, as well as their corresponding transcripts. Let's download data, prepared manifests and supplementary files.\n",
"\n",
"*NOTE: The sample data is not enough data to properly train a FastPitch or Mixer-TTS model. This will not result in a trained model and is just used as an example.*\n",
"\n",
"Let's download everything that we need for this dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6b621b1c",
"metadata": {},
"outputs": [],
"source": [
"# download data and manifests\n",
"!wget https://github.com/NVIDIA/NeMo/releases/download/v0.11.0/test_data.tar.gz && mkdir -p tests/data && tar xzf test_data.tar.gz -C tests/data\n",
"\n",
"# additional files\n",
"!mkdir -p tts_dataset_files && cd tts_dataset_files \\\n",
"&& wget https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/scripts/tts_dataset_files/cmudict-0.7b_nv22.10 \\\n",
"&& wget https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/scripts/tts_dataset_files/heteronyms-052722 \\\n",
"&& cd .."
]
},
{
"cell_type": "markdown",
"id": "45f19be7",
"metadata": {},
"source": [
"### FastPitch\n",
"\n",
"Now that we looked at the FastPitch model, let's see how to prepare all data for training it. \n",
"\n",
"Firstly, let's download all necessary training scripts and configs."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4e76d950",
"metadata": {},
"outputs": [],
"source": [
"!wget https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/examples/tts/fastpitch.py\n",
"\n",
"!mkdir -p conf && cd conf \\\n",
"&& wget https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/examples/tts/conf/fastpitch_align_v1.05.yaml \\\n",
"&& cd .."
]
},
{
"cell_type": "markdown",
"id": "82a2eacb",
"metadata": {},
"source": [
"TTS text preprocessing pipeline consists of two stages: text normalization and text tokenization. Both of them can be handled by `nemo.collections.tts.data.tts_dataset.TTSDataset` for training. \n",
"\n",
"Our current example dataset is in English, so let's use `nemo_text_processing.text_normalization.normalize.Normalizer` for normalization which supports English (and many other languages!) and `nemo.collections.common.tokenizers.text_to_speech.tts_tokenizers.EnglishCharsTokenizer`. So, our model will receive grapheme representation of text (graphemes) as input."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a46da66d",
"metadata": {},
"outputs": [],
"source": [
"# Text normalizer\n",
"text_normalizer = Normalizer(\n",
" lang=\"en\", \n",
" input_case=\"cased\", \n",
")\n",
"\n",
"text_normalizer_call_kwargs = {\n",
" \"punct_pre_process\": True,\n",
" \"punct_post_process\": True\n",
"}\n",
"\n",
"# Text tokenizer\n",
"text_tokenizer = EnglishCharsTokenizer()"
]
},
{
"cell_type": "markdown",
"id": "884d8d82",
"metadata": {},
"source": [
"To accelerate and stabilize our training, we also need to extract pitch for every audio, estimate pitch statistics (mean and std) and pre-calculate alignment prior matrices for alignment framework. To do this, all we need to do is iterate over our data one time.\n",
"\n",
"In the below method the arguments are as follows:\n",
"- `sup_data_path` β path to the folder which contains supplementary data. If the supplementary data or the folder does not already exists then it will be created.\n",
"\n",
"- `sup_data_types` β types of supplementary data to be provided to the model.\n",
"\n",
"- `text_tokenizer` β text tokenizer object that we already created.\n",
"\n",
"- `text_normalizer` β text normalizer object that we already created.\n",
"\n",
"- `text_normalizer_call_kwargs` β dictionary of arguments to be used in calling the text normalizer that we already created."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7108f748",
"metadata": {},
"outputs": [],
"source": [
"def pre_calculate_supplementary_data(sup_data_path, sup_data_types, text_tokenizer, text_normalizer, text_normalizer_call_kwargs):\n",
" # init train and val dataloaders\n",
" stages = [\"train\", \"val\"]\n",
" stage2dl = {}\n",
" for stage in stages:\n",
" ds = TTSDataset(\n",
" manifest_filepath=f\"tests/data/asr/an4_{stage}.json\",\n",
" sample_rate=16000,\n",
" sup_data_path=sup_data_path,\n",
" sup_data_types=sup_data_types,\n",
" n_fft=1024,\n",
" win_length=1024,\n",
" hop_length=256,\n",
" window=\"hann\",\n",
" n_mels=80,\n",
" lowfreq=0,\n",
" highfreq=8000,\n",
" text_tokenizer=text_tokenizer,\n",
" text_normalizer=text_normalizer,\n",
" text_normalizer_call_kwargs=text_normalizer_call_kwargs\n",
"\n",
" ) \n",
" stage2dl[stage] = torch.utils.data.DataLoader(ds, batch_size=1, collate_fn=ds._collate_fn, num_workers=1)\n",
"\n",
" # iteration over dataloaders\n",
" pitch_mean, pitch_std, pitch_min, pitch_max = None, None, None, None\n",
" for stage, dl in stage2dl.items():\n",
" pitch_list = []\n",
" for batch in tqdm(dl, total=len(dl)):\n",
" tokens, tokens_lengths, audios, audio_lengths, attn_prior, pitches, pitches_lengths = batch\n",
" pitch = pitches.squeeze(0)\n",
" pitch_list.append(pitch[pitch != 0])\n",
"\n",
" if stage == \"train\":\n",
" pitch_tensor = torch.cat(pitch_list)\n",
" pitch_mean, pitch_std = pitch_tensor.mean().item(), pitch_tensor.std().item()\n",
" pitch_min, pitch_max = pitch_tensor.min().item(), pitch_tensor.max().item()\n",
" \n",
" return pitch_mean, pitch_std, pitch_min, pitch_max"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f1affe50",
"metadata": {},
"outputs": [],
"source": [
"fastpitch_sup_data_path = \"fastpitch_sup_data_folder\"\n",
"sup_data_types = [\"align_prior_matrix\", \"pitch\"]\n",
"\n",
"pitch_mean, pitch_std, pitch_min, pitch_max = pre_calculate_supplementary_data(\n",
" fastpitch_sup_data_path, sup_data_types, text_tokenizer, text_normalizer, text_normalizer_call_kwargs\n",
")"
]
},
{
"cell_type": "markdown",
"id": "d868bb48",
"metadata": {},
"source": [
"### Mixer-TTS\n",
"\n",
"Now, let's see how to prepare data for training Mixer-TTS. \n",
"\n",
"Firstly, let's download all necessary training scripts and configs."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1c7c0cfc",
"metadata": {},
"outputs": [],
"source": [
"!wget https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/examples/tts/mixer_tts.py\n",
"\n",
"!mkdir -p conf && cd conf \\\n",
"&& wget https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/examples/tts/conf/mixer-tts.yaml \\\n",
"&& cd .."
]
},
{
"cell_type": "markdown",
"id": "e2f10886",
"metadata": {},
"source": [
"In the FastPitch pipeline we used a char-based tokenizer, but in the Mixer-TTS training pipeline we would like to demonstrate a phoneme-based tokenizer `nemo.collections.common.tokenizers.text_to_speech.tts_tokenizers.EnglishPhonemesTokenizer`. Unlike char-based tokenizer, `EnglishPhonemesTokenizer` needs a phoneme dictionary and a heteronym dictionary. We will be using the same `nemo_text_processing.text_normalization.normalize.Normalizer` for normalizing the text as used in the FastPitch example."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c6ba0f9a",
"metadata": {},
"outputs": [],
"source": [
"# Text normalizer\n",
"text_normalizer = Normalizer(\n",
" lang=\"en\", \n",
" input_case=\"cased\", \n",
")\n",
"\n",
"text_normalizer_call_kwargs = {\n",
" \"punct_pre_process\": True,\n",
" \"punct_post_process\": True\n",
"}\n",
"\n",
"# Grapheme-to-phoneme module\n",
"g2p = EnglishG2p(\n",
" phoneme_dict=\"tts_dataset_files/cmudict-0.7b_nv22.10\",\n",
" heteronyms=\"tts_dataset_files/heteronyms-052722\"\n",
")\n",
"\n",
"# Text tokenizer\n",
"text_tokenizer = EnglishPhonemesTokenizer(\n",
" punct=True,\n",
" stresses=True,\n",
" chars=True,\n",
" apostrophe=True,\n",
" pad_with_space=True,\n",
" g2p=g2p,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "9fc55415",
"metadata": {},
"source": [
"Just like in FastPitch we will need to extract pitch for every audio, estimate pitch statistics (mean and std) and pre-calculate alignment prior matrices for alignment framework."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aabc1f0f",
"metadata": {},
"outputs": [],
"source": [
"mixer_tts_sup_data_path = \"mixer_tts_sup_data_folder\"\n",
"sup_data_types = [\"align_prior_matrix\", \"pitch\"]\n",
"\n",
"pitch_mean, pitch_std, pitch_min, pitch_max = pre_calculate_supplementary_data(\n",
" mixer_tts_sup_data_path, sup_data_types, text_tokenizer, text_normalizer, text_normalizer_call_kwargs\n",
")"
]
},
{
"cell_type": "markdown",
"id": "c0711ec6",
"metadata": {},
"source": [
"# Training"
]
},
{
"cell_type": "markdown",
"id": "0a95848c",
"metadata": {},
"source": [
"### FastPitch\n",
"\n",
"Now we are ready for training our model! Let's try to train FastPitch.\n",
"\n",
"*NOTE: The sample data is not enough data to properly train a FastPitch. This will not result in a trained FastPitch and is used to just as example.*"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cc1a9107",
"metadata": {},
"outputs": [],
"source": [
"!(python fastpitch.py --config-name=fastpitch_align_v1.05.yaml \\\n",
" sample_rate=16000 \\\n",
" train_dataset=tests/data/asr/an4_train.json \\\n",
" validation_datasets=tests/data/asr/an4_val.json \\\n",
" sup_data_types=\"['align_prior_matrix', 'pitch']\" \\\n",
" sup_data_path={fastpitch_sup_data_path} \\\n",
" pitch_mean={pitch_mean} \\\n",
" pitch_std={pitch_std} \\\n",
" pitch_fmin={pitch_min} \\\n",
" pitch_fmax={pitch_max} \\\n",
" ~model.text_tokenizer \\\n",
" +model.text_tokenizer._target_=nemo.collections.common.tokenizers.text_to_speech.tts_tokenizers.EnglishCharsTokenizer \\\n",
" +trainer.max_steps=100 ~trainer.max_epochs \\\n",
" trainer.check_val_every_n_epoch=25 \\\n",
" +trainer.max_epochs=5 \\\n",
" model.train_ds.dataloader_params.batch_size=24 \\\n",
" model.validation_ds.dataloader_params.batch_size=24 \\\n",
" exp_manager.exp_dir=./fastpitch_log_dir \\\n",
" model.n_speakers=1 trainer.devices=1 trainer.strategy=null \\\n",
")"
]
},
{
"cell_type": "markdown",
"id": "d6bce3ce",
"metadata": {},
"source": [
"Let's look at some of the options in the training command:\n",
"\n",
"- *`~model.text_tokenizer`* β remove default text tokenizer. The default tokenizer in the `fastpitch_align_v1.05.yaml` is `nemo.collections.common.tokenizers.text_to_speech.tts_tokenizers.EnglishPhonemesTokenizer`, but we want to use `nemo.collections.common.tokenizers.text_to_speech.tts_tokenizers.EnglishCharsTokenizer`.\n",
"\n",
"- *`+model.text_tokenizer._target_`* β add `nemo.collections.common.tokenizers.text_to_speech.tts_tokenizers.EnglishCharsTokenizer` as text tokenizer class."
]
},
{
"cell_type": "markdown",
"id": "2d9745fc",
"metadata": {},
"source": [
"### Mixer-TTS\n",
"\n",
"Now we are ready for training our model! Let's try to train Mixer-TTS.\n",
"\n",
"*NOTE: The sample data is not enough data to properly train a Mixer-TTS. This will not result in a trained Mixer-TTS and is used to just as example.*"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8db3a903",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"!python mixer_tts.py sample_rate=16000 \\\n",
"train_dataset=tests/data/asr/an4_train.json \\\n",
"validation_datasets=tests/data/asr/an4_val.json \\\n",
"sup_data_types=\"['align_prior_matrix', 'pitch']\" \\\n",
"sup_data_path={mixer_tts_sup_data_path} \\\n",
"phoneme_dict_path=tts_dataset_files/cmudict-0.7b_nv22.10 \\\n",
"heteronyms_path=tts_dataset_files/heteronyms-052722 \\\n",
"pitch_mean={pitch_mean} \\\n",
"pitch_std={pitch_std} \\\n",
"model.train_ds.dataloader_params.batch_size=6 \\\n",
"model.train_ds.dataloader_params.num_workers=0 \\\n",
"model.validation_ds.dataloader_params.num_workers=0 \\\n",
"trainer.max_epochs=3 \\\n",
"trainer.strategy=null \\\n",
"trainer.check_val_every_n_epoch=1"
]
},
{
"cell_type": "markdown",
"id": "a00f8b88",
"metadata": {},
"source": [
"That's it!\n",
"\n",
"In order to train FastPitch and Mixer-TTS for real purposes, it is highly recommended to obtain high quality speech data with the following properties:\n",
"\n",
"* Sampling rate of 22050Hz or higher\n",
"* Single speaker\n",
"* Speech should contain a variety of speech phonemes\n",
"* Audio split into segments of 1-10 seconds\n",
"* Audio segments should not have silence at the beginning and end\n",
"* Audio segments should not contain long silences inside"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.15 ('ptl_venv')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.15"
},
"vscode": {
"interpreter": {
"hash": "f8a1d50fd7b1e17bd198f085b8ced031398c6134b0da7c4415c17601bbcccc4e"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|