File size: 31,298 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"BRANCH = 'r1.17.0'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"\"\"\"\n",
"You can run either this notebook locally (if you have all the dependencies and a GPU) or on Google Colab.\n",
"\n",
"Instructions for setting up Colab are as follows:\n",
"1. Open a new Python 3 notebook.\n",
"2. Import this notebook from GitHub (File -> Upload Notebook -> \"GITHUB\" tab -> copy/paste GitHub URL)\n",
"3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator)\n",
"4. Run this cell to set up dependencies.\n",
"\"\"\"\n",
"# If you're using Google Colab and not running locally, run this cell\n",
"\n",
"# install NeMo\n",
"!python -m pip install git+https://github.com/NVIDIA/NeMo.git@$BRANCH#egg=nemo_toolkit[all]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# If you're not using Colab, you might need to upgrade jupyter notebook to avoid the following error:\n",
"# 'ImportError: IProgress not found. Please update jupyter and ipywidgets.'\n",
"\n",
"! pip install ipywidgets\n",
"! jupyter nbextension enable --py widgetsnbextension\n",
"\n",
"# Please restart the kernel after running this cell"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"from nemo.utils.exp_manager import exp_manager\n",
"from nemo.collections import nlp as nemo_nlp\n",
"from nemo.collections import asr as nemo_asr\n",
"\n",
"import os\n",
"import wget\n",
"import torch\n",
"import pytorch_lightning as pl\n",
"from omegaconf import OmegaConf"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"# Task Description\n",
"Automatic Speech Recognition (ASR) systems typically generate text with no punctuation and capitalization of the words.\n",
"This tutorial explains how to implement a model in NeMo that will predict punctuation and capitalization using both text and audio for each word in a sentence to make ASR output more readable and to boost performance of the named entity recognition, machine translation or text-to-speech models. You can find documentation on text only model [here](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/nlp/punctuation_and_capitalization.html).\n",
"\n",
"\n",
"We'll show how to train a model for this task using a pre-trained [BERT](https://arxiv.org/abs/1810.04805) and [Conformer](https://arxiv.org/abs/2005.08100) models. You can find all pretrained Conformer models on [NGC](https://catalog.ngc.nvidia.com/models?filters=&orderBy=dateModifiedDESC&query=conformer).\n",
"\n",
"For every word in our training dataset we’re going to predict:\n",
"\n",
"- punctuation mark that should follow the word and\n",
"- whether the word should be capitalized\n",
"\n",
"\n",
"In some cases lexical only model can't predict punctuation correctly without audio. It is especially hard for conversational speech.\n",
"\n",
"For example:\n",
"\n",
"- Yeah, over there you walk a lot. -> Yeah, over there you walk a lot?\n",
"- Supposedly eighty five percent of your body's liquid, but, you know, just a hassle. -> Supposedly, eighty five percent of your body's liquid. But, you know just a hassle.\n",
"- Oh, yeah? -> Oh, yeah.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## Architecture\n",
"Punctuation and capitalization lexical audio model is based on [Multimodal Semi-supervised Learning Framework for Punctuation Prediction in Conversational Speech](https://arxiv.org/pdf/2008.00702.pdf). Model consists of lexical encoder (BERT-like model), acoustic encoder (i.e. Conformer's audio encoder), fusion of lexical and audio features (attention based fusion) and prediction layers.\n",
"\n",
"Fusion is needed because encoded text and audio might have different length therefore can't be aligned one-to-one. As model predicts punctuation and capitalization per text token we use cross-attention between encoded lexical and encoded audio input."
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"# Dataset\n",
"This model can work with any dataset as long as it follows the format specified below.\n",
"The training and evaluation data is divided into *3 files: text.txt, labels.txt and audio.txt*.\n",
"Each line of the **text.txt** file contains text sequences, where words are separated with spaces: [WORD] [SPACE] [WORD] [SPACE] [WORD], for example:"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"\n",
"\n",
"```\n",
"when is the next flight to new york\n",
"the next flight is ...\n",
"...\n",
"```\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"The **labels.txt** file contains corresponding labels for each word in text.txt, the labels are separated with spaces. Each label in labels.txt file consists of 2 symbols:\n",
"\n",
"- the first symbol of the label indicates what punctuation mark should follow the word (where O means no punctuation needed);\n",
"- the second symbol determines if a word needs to be capitalized or not (where U indicates that the word should be upper cased, and O - no capitalization needed.)\n",
"\n",
"In this tutorial, we are considering only commas, periods, and question marks the rest punctuation marks were removed. To use more punctuation marks, update the dataset to include desired labels, no changes to the model needed.\n",
"\n",
"Each line of the **labels.txt** should follow the format:\n",
"[LABEL] [SPACE] [LABEL] [SPACE] [LABEL] (for labels.txt).\n",
"For example, labels for the above text.txt file should be:"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"\n",
"\n",
"```\n",
"OU OO OO OO OO OO OU ?U\n",
"OU OO OO OO ...\n",
"...\n",
"```\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"The complete list of all possible labels for this task used in this tutorial is: `OO, ,O, .O, ?O, OU, ,U, .U, ?U.`\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"The **audio.txt** file contains corresponding audio's filepath for each sample in text.txt\n",
"\n",
"Each line of the **audio.txt** should follow the format:\n",
"/Path/to/audio/file.wav\n",
"\n",
"For example, filepaths for the above text.txt should be:"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"\n",
"\n",
"```\n",
"/path/1.wav\n",
"/path/2.wav\n",
"...\n",
"```\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## Download and preprocess the data"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"In this notebook we are going to use a subset of [LibriTTS](https://www.openslr.org/60/). This script will download and preprocess the LibriTTS data [NeMo/examples/nlp/token_classification/get_libritts_data.py](https://github.com/NVIDIA/NeMo/blob/stable/examples/nlp/token_classification/data/get_libritts_data.py).\n",
"**Note:** for simplicity we will use dev subset as train and dev subsets"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"DATA_DIR = 'PATH_TO_A_DIRECTORY_WHERE_DATA_FROM_THIS_TUTORIAL_IS_STORED'\n",
"WORK_DIR = 'PATH_TO_A_DIRECTORY_WHERE_SCRIPTS_FOR_THIS_TUTORIAL_ARE_SAVED'\n",
"MODEL_CONFIG = \"punctuation_capitalization_lexical_audio_config.yaml\"\n",
"\n",
"# model parameters\n",
"TOKENS_IN_BATCH = 1024\n",
"MAX_SEQ_LENGTH = 64\n",
"LEARNING_RATE = 0.00002"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"outputs": [],
"source": [
"# download get_libritts_data.py script to download and preprocess the LibriTTS data\n",
"os.makedirs(WORK_DIR, exist_ok=True)\n",
"if not os.path.exists(WORK_DIR + '/get_libritts_data.py'):\n",
" print('Downloading get_libritts_data.py...')\n",
" wget.download(f'https://raw.githubusercontent.com/NVIDIA/NeMo/{BRANCH}/examples/nlp/token_classification/data/get_libritts_data.py', WORK_DIR)\n",
"else:\n",
" print ('get_libritts_data.py already exists')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# download and preprocess the data\n",
"# we will use dev_clean and dev_other subsets\n",
"# --clean flag deletes raw data\n",
"!python $WORK_DIR/get_libritts_data.py --data_dir $DATA_DIR --clean --data_set dev_clean,dev_other"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"after execution of the above cell, your data folder will contain the following 3 files needed for training (raw LibriTTS data could be present if `--clean` was not used):\n",
"- labels_dev.txt\n",
"- text_dev.txt\n",
"- audio_dev.txt"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"!ls -l $DATA_DIR"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# let's take a look at the data\n",
"print('Raw text:')\n",
"!head -n 5 $DATA_DIR/text_dev.txt\n",
"\n",
"print('\\nLabels:')\n",
"!head -n 5 $DATA_DIR/labels_dev.txt\n",
"\n",
"print('\\nFilepaths: ')\n",
"!head -n 5 $DATA_DIR/audio_dev.txt"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"As you see, `get_libritts_data.py` script provides not only downloads LibriTTS but also creates labels. If you wish to preprocess your own data, use [examples/nlp/token_classification/data/prepare_data_for_punctuation_capitalization.py](https://github.com/NVIDIA/NeMo/blob/main/examples/nlp/token_classification/data/prepare_data_for_punctuation_capitalization.py) script."
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"# Tarred dataset\n",
"\n",
"If your dataset is too large to be stored in memory, you can use tarred dataset. A tarred dataset is a collection of tarred files which contain batches ready for passing into a model.\n",
"\n",
"All tar files will contain identical number of batches, so if number of batches in the dataset is not evenly divisible by parameter `--num_batches_per_tar_file` value, then up to `--num_batches_per_tar_file - 1` batches may be lost. More details on [tarred dataset](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/nlp/punctuation_and_capitalization.html#tarred-dataset) and details specific to lexical and audio model's [tarred dataset](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/nlp/punctuation_and_capitalization_lexical_audio.html#tarred-dataset)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# Number of lines in text and labels files\n",
"!wc -l $DATA_DIR/text_dev.txt\n",
"!wc -l $DATA_DIR/labels_dev.txt"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"## download script to prepare tarred dataset\n",
"os.makedirs(WORK_DIR, exist_ok=True)\n",
"if not os.path.exists(f\"{WORK_DIR}/create_punctuation_capitalization_tarred_dataset.py\"):\n",
" print('Downloading create_punctuation_capitalization_tarred_dataset.py...')\n",
" wget.download(f'https://raw.githubusercontent.com/NVIDIA/NeMo/{BRANCH}/examples/nlp/token_classification/data/create_punctuation_capitalization_tarred_dataset.py', WORK_DIR)\n",
"else:\n",
" print (\"create_punctuation_capitalization_tarred_dataset.py script already exists\")\n",
"\n",
"!python $WORK_DIR/create_punctuation_capitalization_tarred_dataset.py \\\n",
" --text $DATA_DIR/text_dev.txt \\\n",
" --labels $DATA_DIR/labels_dev.txt \\\n",
" --output_dir $DATA_DIR/train_tarred \\\n",
" --num_batches_per_tarfile 20 \\\n",
" --tokens_in_batch 1024 \\\n",
" --lines_per_dataset_fragment 4000 \\\n",
" --tokenizer_name bert-base-uncased \\\n",
" --n_jobs 2 \\\n",
" --use_audio \\\n",
" --sample_rate 16000 \\\n",
" --audio_file $DATA_DIR/audio_dev.txt\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"!ls $DATA_DIR/train_tarred -l"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"!ls $DATA_DIR/train_tarred/*.tar | wc -l # number of tar files"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"!ls $DATA_DIR/train_tarred/ | grep -v '.tar' # all not tar files"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"If you wish to use tarred dataset, then you need to\n",
"- pass metadata JSON file in config parameter `model.train_ds.tar_metadata_file`,\n",
"- set `model.train_ds.use_tarred_dataset=true`."
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"# Model Configuration"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"In the Punctuation and Capitalization Model, we are jointly training two token-level classifiers on top of the fusion of pretrained [BERT](https://arxiv.org/pdf/1810.04805.pdf) and encoder of ASR model models:\n",
"- one classifier to predict punctuation and\n",
"- the other one - capitalization.\n",
"\n",
"The model is defined in a config file which declares multiple important sections. They are:\n",
"- **model**: All arguments that are related to the Model - language model, token classifiers, optimizer and schedulers, dataset and any other related information\n",
"\n",
"- **trainer**: Any argument to be passed to PyTorch Lightning\n",
"\n",
"See [docs](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/punctuation_and_capitalization.html#training-punctuation-and-capitalization-model) for full config description."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# download the model's configuration file\n",
"config_dir = WORK_DIR + '/configs/'\n",
"os.makedirs(config_dir, exist_ok=True)\n",
"if not os.path.exists(config_dir + MODEL_CONFIG):\n",
" print('Downloading config file...')\n",
" wget.download(f'https://raw.githubusercontent.com/NVIDIA/NeMo/{BRANCH}/examples/nlp/token_classification/conf/' + MODEL_CONFIG, config_dir)\n",
"else:\n",
" print ('config file already exists')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# this line will print the entire config of the model\n",
"config_path = f'{WORK_DIR}/configs/{MODEL_CONFIG}'\n",
"print(config_path)\n",
"config = OmegaConf.load(config_path)\n",
"print(OmegaConf.to_yaml(config))"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"# Setting up Data within the config\n",
"\n",
"Among other things, the config file contains dictionaries called `common_dataset_parameters`, `train_ds` and `validation_ds`. These are configurations used to setup the Dataset and DataLoaders of the corresponding config.\n",
"\n",
"Specify paths directories with train and dev datasets in parameters `train_ds.ds_item` and `validation_ds.ds_item`.\n",
"\n",
"If you want to use multiple datasets for evaluation, specify paths to the directory(ies) with evaluation file(s) in the following way:\n",
"\n",
"`model.validation_ds.ds_item=[PATH_TO_DEV1,PATH_TO_DEV2]` (Note no space between the paths and square brackets).\n",
"\n",
"Also notice that some configs, including `model.train_ds.ds_item`, have `???` in place of values, this values are required to be specified by the user.\n",
"\n",
"Let's now add the data directory path to the config."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# in this tutorial train and dev data is located in the same folder\n",
"config.model.train_ds.ds_item = DATA_DIR\n",
"config.model.validation_ds.ds_item = DATA_DIR\n",
"del config.model.test_ds # We do not have test data, only train and dev"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"# Building the PyTorch Lightning Trainer\n",
"\n",
"NeMo models are primarily PyTorch Lightning modules - and therefore are entirely compatible with the PyTorch Lightning ecosystem!\n",
"\n",
"Let's first instantiate a Trainer object!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"print(\"Trainer config - \\n\")\n",
"print(OmegaConf.to_yaml(config.trainer))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# lets modify some trainer configs\n",
"# checks if we have GPU available and uses it\n",
"accelerator = 'gpu' if torch.cuda.is_available() else 'cpu'\n",
"config.trainer.devices = 1\n",
"config.trainer.accelerator = accelerator\n",
"config.trainer.precision = 16 if torch.cuda.is_available() else 32\n",
"\n",
"# For mixed precision training, use precision=16 and amp_level=O1\n",
"\n",
"# Reduces maximum number of epochs to 1 for a quick training\n",
"config.trainer.max_epochs = 1\n",
"\n",
"# Remove distributed training flags\n",
"config.trainer.strategy = None\n",
"config.exp_manager.use_datetime_version=False\n",
"config.exp_manager.explicit_log_dir='Punctuation_And_Capitalization_Lexical_Audio'\n",
"\n",
"trainer = pl.Trainer(**config.trainer)"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"# Setting up a NeMo Experiment\n",
"\n",
"NeMo has an experiment manager that handles logging and checkpointing for us, so let's use it!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"exp_dir = exp_manager(trainer, config.get(\"exp_manager\", None))\n",
"\n",
"# the exp_dir provides a path to the current experiment for easy access\n",
"exp_dir = str(exp_dir)\n",
"exp_dir"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"# Model Training"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"Before initializing the model, we might want to modify some of the model configs. For example, we might want to modify the pretrained BERT model and Conformer model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# complete list of supported BERT-like models\n",
"print(nemo_nlp.modules.get_pretrained_lm_models_list())\n",
"\n",
"PRETRAINED_BERT_MODEL = \"bert-base-uncased\"\n",
"\n",
"# complete list of supported ASR models\n",
"print(nemo_asr.models.ASRModel.list_available_models())\n",
"\n",
"PRETRAINED_ASR_MODEL = \"stt_en_conformer_ctc_small\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# add the specified above model parameters to the config\n",
"config.model.language_model.pretrained_model_name = PRETRAINED_BERT_MODEL\n",
"config.model.train_ds.tokens_in_batch = TOKENS_IN_BATCH\n",
"config.model.train_ds.text_file = 'text_dev.txt'\n",
"config.model.train_ds.labels_file = 'labels_dev.txt'\n",
"config.model.train_ds.audio_file = 'audio_dev.txt'\n",
"config.model.validation_ds.tokens_in_batch = TOKENS_IN_BATCH\n",
"config.model.optim.lr = LEARNING_RATE\n",
"config.model.audio_encoder.pretrained_model = PRETRAINED_ASR_MODEL\n",
"config.model.train_ds.preload_audios = True\n",
"config.model.validation_ds.preload_audios = True"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"Now, we are ready to initialize our model. During the model initialization call, the dataset and data loaders we'll be prepared for training and evaluation.\n",
"Also, the pretrained BERT model will be downloaded, note it can take up to a few minutes depending on the size of the chosen BERT model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# initialize the model\n",
"# during this stage, the dataset and data loaders we'll be prepared for training and evaluation\n",
"model = nemo_nlp.models.PunctuationCapitalizationLexicalAudioModel(cfg=config.model, trainer=trainer)"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## Monitoring training progress\n",
"Optionally, you can create a Tensorboard visualization to monitor training progress."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"try:\n",
" from google import colab\n",
" COLAB_ENV = True\n",
"except (ImportError, ModuleNotFoundError):\n",
" COLAB_ENV = False\n",
"\n",
"# Load the TensorBoard notebook extension\n",
"if COLAB_ENV:\n",
" %load_ext tensorboard\n",
" %tensorboard --logdir {exp_dir}\n",
"else:\n",
" print(\"To use tensorboard, please use this notebook in a Google Colab environment.\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# start the training\n",
"trainer.fit(model)"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"# Training using tarred dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"config = OmegaConf.load(config_path)\n",
"config.model.train_ds.ds_item = f'{DATA_DIR}/train_tarred'\n",
"config.model.train_ds.use_tarred_dataset = True\n",
"# Only metadata file name is required if `use_tarred_dataset=true`.\n",
"config.model.train_ds.tar_metadata_file = 'metadata.punctuation_capitalization.tokens1024.max_seq_length512.bert-base-uncased.json'\n",
"config.model.validation_ds.ds_item = DATA_DIR\n",
"del config.model.test_ds # We do not have test data, only train and dev\n",
"\n",
"# Trainer\n",
"accelerator = 'gpu' if torch.cuda.is_available() else 'cpu'\n",
"config.trainer.devices = 1\n",
"config.trainer.accelerator = accelerator\n",
"config.trainer.precision = 16 if torch.cuda.is_available() else 32\n",
"config.trainer.max_epochs = 1\n",
"config.trainer.strategy = None\n",
"\n",
"# Exp manager\n",
"config.exp_manager.explicit_log_dir = 'tarred_experiment'\n",
"\n",
"config.model.language_model.pretrained_model_name = PRETRAINED_BERT_MODEL\n",
"config.model.validation_ds.tokens_in_batch = TOKENS_IN_BATCH\n",
"config.model.optim.lr = LEARNING_RATE\n",
"config.model.validation_ds.preload_audios = True\n",
"config.model.audio_encoder.pretrained_model = PRETRAINED_ASR_MODEL"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"trainer = pl.Trainer(**config.trainer)\n",
"exp_dir = exp_manager(trainer, config.get(\"exp_manager\", None))\n",
"exp_manager.use_datetime_version=False\n",
"exp_manager.explicit_log_dir='Punctuation_And_Capitalization_Lexical_Audio'\n",
"model = nemo_nlp.models.PunctuationCapitalizationLexicalAudioModel(cfg=config.model, trainer=trainer)\n",
"trainer.fit(model)"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"# Inference using a pretrained model\n",
"\n",
"For [inference](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/nlp/punctuation_and_capitalization_lexical_audio.html#inference) you can use same script as ``PunctuationCapitalizationModel`` uses, just add **--use_audio** and **--audio_file** parameters."
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## Training Script\n",
"\n",
"If you have NeMo installed locally, you can also train the model with [nlp/token_classification/punctuation_capitalization_lexical_audio_train_evaluate.py](https://github.com/NVIDIA/NeMo/blob/main/examples/nlp/token_classification/punctuation_capitalization_lexical_audio_train_evaluate.py).\n",
"\n",
"To run training script, use:\n",
"\n",
"`python punctuation_capitalization_lexical_audio_train_evaluate.py model.train_ds.ds_item=PATH_TO_TRAIN_DATA_DIR`\n",
"\n",
"\n",
"# Finetuning model with your data\n",
"\n",
"When we were training the model from scratch, the datasets were prepared for training during the model initialization. When we are using a pretrained Punctuation and Capitalization model, before training, we need to setup training and evaluation data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# let's reload our pretrained model\n",
"pretrained_model = nemo_nlp.models.PunctuationCapitalizationLexicalAudioModel.restore_from('Punctuation_And_Capitalization_Lexical_Audio/checkpoints/Punctuation_and_Capitalization_Lexical_Audio.nemo')\n",
"\n",
"# setup train and validation Pytorch DataLoaders\n",
"pretrained_model.update_config_after_restoring_from_checkpoint(\n",
" train_ds={\n",
" 'ds_item': DATA_DIR,\n",
" 'text_file': 'text_dev.txt',\n",
" 'labels_file': 'labels_dev.txt',\n",
" 'audio_file': 'audio_dev.txt',\n",
" 'tokens_in_batch': 1024,\n",
" },\n",
" validation_ds={\n",
" 'ds_item': DATA_DIR,\n",
" 'text_file': 'text_dev.txt',\n",
" 'labels_file': 'labels_dev.txt',\n",
" 'audio_file': 'audio_dev.txt',\n",
" 'tokens_in_batch': 1024,\n",
" },\n",
")\n",
"\n",
"# and now we can create a PyTorch Lightning trainer and call `fit` again\n",
"# for this tutorial we are setting fast_dev_run to True, and the trainer will run 1 training batch and 1 validation batch\n",
"# for actual model training, disable the flag\n",
"fast_dev_run = True\n",
"trainer = pl.Trainer(devices=1, accelerator='gpu', fast_dev_run=fast_dev_run)\n",
"pretrained_model.set_trainer(trainer)\n",
"pretrained_model.setup_training_data(pretrained_model.cfg.train_ds)\n",
"pretrained_model.setup_validation_data(pretrained_model.cfg.validation_ds)\n",
"trainer.fit(pretrained_model)"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## Next steps\n",
"\n",
"In this tutorial we used fairly small amount of data for showcase purposes. If you wish to train your own model you probably need to collect more data.\n",
"\n",
"For more details on model you can read [documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/nlp/punctuation_and_capitalization_lexical_audio.html#quick-start-guide). \n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
}
},
"nbformat": 4,
"nbformat_minor": 1
}
|