File size: 62,776 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "EXA4lgxDIzwa"
},
"outputs": [],
"source": [
"\"\"\"\n",
"You can run either this notebook locally (if you have all the dependencies and a GPU) or on Google Colab.\n",
"\n",
"Instructions for setting up Colab are as follows:\n",
"1. Open a new Python 3 notebook.\n",
"2. Import this notebook from GitHub (File -> Upload Notebook -> \"GITHUB\" tab -> copy/paste GitHub URL)\n",
"3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator)\n",
"4. Run this cell to set up dependencies.\n",
"5. Restart the runtime (Runtime -> Restart Runtime) for any upgraded packages to take effect\n",
"\"\"\"\n",
"# If you're using Google Colab and not running locally, run this cell.\n",
"\n",
"## Install dependencies\n",
"!pip install wget\n",
"!apt-get install sox libsndfile1 ffmpeg\n",
"!pip install text-unidecode\n",
"!pip install matplotlib>=3.3.2\n",
"\n",
"## Install NeMo\n",
"BRANCH = 'r1.17.0'\n",
"!python -m pip install git+https://github.com/NVIDIA/NeMo.git@$BRANCH#egg=nemo_toolkit[all]\n",
"\n",
"# Update numba and restart (this is required to update internal numba version of Colab)\n",
"\n",
"# In a conda environment, you would use the following command\n",
"# Update Numba to > 0.54\n",
"# conda install -c conda-forge numba>=0.54\n",
"# or\n",
"# conda update -c conda-forge numba>=0.54\n",
"\n",
"# For pip based environments,\n",
"# Update Numba to > 0.54\n",
"import os\n",
"import signal\n",
"\n",
"!pip install --upgrade numba\n",
"\n",
"# This will kill the kernel, click next cell to import the latest numba\n",
"os.kill(os.getpid(), signal.SIGKILL)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_W1joUSQKvAd"
},
"source": [
"# Buffered Transducer ASR\n",
"\n",
"There are many approaches to perform streaming/buffered inference for causal CTC / Transducer models. However, it is often observed that causal models sacrifice accuracy to perform streaming evaluation. \n",
"\n",
"In this notebook, similar to the CTC tutorial for [Streaming ASR](https://github.com/NVIDIA/NeMo/blob/stable/tutorials/asr/Streaming_ASR.ipynb), we will tackle the challenge of buffered ASR for long-form speech recognition, but this time we will use Transducer models as the basis for ASR. \n",
"\n",
"You may use this script [ASR Chunked Streaming Inference](https://github.com/NVIDIA/NeMo/blob/stable/examples/asr/asr_chunked_inference/rnnt/speech_to_text_buffered_infer_rnnt.py) to transcribe long audio files with Transducer models. \n",
"\n",
"**Note**: It is highly recommended to review the ``Streaming ASR`` tutorial for a good overview of how streaming/buffered inference works for CTC models and the underlying motivation of streaming ASR itself.\n",
"\n",
"------"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "nJadC6xmQydl"
},
"source": [
"Transducers surpass CTC models in speech recognition accuracy when greedy decoding with no LM is used. While CTC models can give better accuracy with beam search decoding and LM, large external language models are required to reach or surpass the accuracy of transducers with greedy decoding.\n",
"\n",
"Moreover, the challenging autoregressive strategy of transducer decoding imposes particular challenges, which we will tackle as a topic in this tutorial."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ymU6NlnVLMji"
},
"source": [
"# Prepare the dataset\n",
"\n",
"We will continue to use the Librispeech dev-clean subset of [Mini Librispeech](https://www.openslr.org/31/)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Bgck1OSaQ63d"
},
"outputs": [],
"source": [
"import os\n",
"\n",
"if not os.path.exists(\"scripts/get_librispeech_data.py\"):\n",
" !wget -P scripts/ https://raw.githubusercontent.com/NVIDIA/NeMo/stable/scripts/dataset_processing/get_librispeech_data.py"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "kZB99Ul0LJF3"
},
"outputs": [],
"source": [
"# If something goes wrong during data processing, un-comment the following line to delete the cached dataset \n",
"# !rm -rf datasets/mini-dev-clean\n",
"!mkdir -p datasets/mini-dev-clean"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "zCCC_ssiLTeK"
},
"outputs": [],
"source": [
"!python scripts/get_librispeech_data.py \\\n",
" --data_root \"datasets/mini-dev-clean/\" \\\n",
" --data_sets dev_clean_2 \\\n",
" --num_workers=10 \\\n",
" --log"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "vssfT5M1LfPz"
},
"outputs": [],
"source": [
"manifest = os.path.join(os.getcwd(), \"datasets/mini-dev-clean/dev_clean_2.json\")\n",
"print(\"Manifest path :\", manifest)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "3GcHmUraL8RW"
},
"source": [
"Let's create a long audio that is about 15 minutes long by concatenating audio from dev-clean and also create the corresponding concatenated transcript."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "lt1Ne9SlL4h9"
},
"outputs": [],
"source": [
"import json\n",
"def concat_audio(manifest_file, final_len=3600):\n",
" concat_len = 0\n",
" final_transcript = \"\"\n",
" with open(\"concat_file.txt\", \"w\") as cat_f:\n",
" while concat_len < final_len:\n",
" with open(manifest_file, \"r\") as mfst_f:\n",
" for l in mfst_f:\n",
" row = json.loads(l.strip())\n",
" if concat_len >= final_len:\n",
" break\n",
" cat_f.write(f\"file {row['audio_filepath']}\\n\")\n",
" final_transcript += (\" \" + row['text'])\n",
" concat_len += float(row['duration'])\n",
" return concat_len, final_transcript"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "-G5l7mZ8L_2X"
},
"outputs": [],
"source": [
"new_duration, ref_transcript = concat_audio(manifest, 15*60)\n",
"\n",
"concat_audio_path = os.path.join(os.getcwd(), \"datasets/mini-dev-clean/concatenated_audio.wav\")\n",
"\n",
"!ffmpeg -t {new_duration} -safe 0 -f concat -i concat_file.txt -c copy -t {new_duration} {concat_audio_path} -y\n",
"print(\"Finished concatenating audio file!\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "RvJBpVdsM9wy"
},
"source": [
"# Buffered Transducer\n",
"\n",
"We will now prepare a Conformer Transducer model to set the stage for buffered inference. Conformers possess self-attention layers, which require quadratic cost in terms of memory and compute for a given audio sequence length. Self-attention naturally imposes a limit of 2-5 minute long audio clips, even on 32 GB of GPU memory. Therefore buffered inference is a prime candidate to resolve the issue of Conformer memory consumption.\n",
"\n",
"**Note**: While we primarily discuss buffered ASR here, the primary difference between buffered and streaming ASR is the size of the chunk (which determines the latency of prediction). Many of the techniques here can be tested with smaller chunk and buffer sizes, therefore significantly improving latency and approach \"streaming\" mode inference."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "b-Szou9bMCwa"
},
"outputs": [],
"source": [
"import torch\n",
"import nemo.collections.asr as nemo_asr\n",
"import contextlib\n",
"import gc"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "anMwz7MdRoYp"
},
"outputs": [],
"source": [
"pretrained_model_name = \"stt_en_conformer_transducer_large\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "W9KbfhycNCPf"
},
"outputs": [],
"source": [
"# Clear up memory\n",
"torch.cuda.empty_cache()\n",
"gc.collect()\n",
"model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained(pretrained_model_name)\n",
"device = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
"# device = 'cpu' # You can transcribe even longer samples on the CPU, though it will take much longer !\n",
"model = model.to(device)\n",
"model.freeze()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "J79e_RSQQ7m1"
},
"outputs": [],
"source": [
"# Helper for torch amp autocast\n",
"if torch.cuda.is_available():\n",
" autocast = torch.cuda.amp.autocast\n",
"else:\n",
" @contextlib.contextmanager\n",
" def autocast():\n",
" print(\"AMP was not available, using FP32!\")\n",
" yield"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "xX-w1eFuQxJp"
},
"source": [
"The call to transcribe() below should fail with a \"CUDA out of memory\" error when run on a GPU with 32 GB memory."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "3zdEXln4NKj0"
},
"outputs": [],
"source": [
"with autocast():\n",
" if torch.cuda.is_available():\n",
" transcript = model.transcribe([concat_audio_path], batch_size=1)[0]"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "xDWxuk65RJV9"
},
"source": [
"## Offline Baseline\n",
"\n",
"Let us check the offline score of this model (on the individual segmented audio files) so that we have a baseline. This will evaluate if the buffered inference significantly sacrifices recognition accuracy.\n",
"\n",
"Note that it is often the case that such clean audio segments will not be available (unless it is a preprocessed dataset). Still, we are lucky since we are using Librispeech, which has been nearly perfectly segmented for our use case. "
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "4a2U660DRCpl"
},
"source": [
"------\n",
"\n",
"Let's download some scripts from the NeMo repo to easily score our model on this dataset in an offline manner.\n",
"\n",
"**Note**: It may take a few minutes to transcribe all the files due to network I/O on Colab. You may choose to uncomment and run the offline evaluation or continue on to the next cell."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "zD2_otE_Q4AZ"
},
"outputs": [],
"source": [
"if not os.path.exists(\"scripts/transcribe_speech.py\"):\n",
" !wget -P scripts/ https://raw.githubusercontent.com/NVIDIA/NeMo/stable/examples/asr/transcribe_speech.py\n",
"\n",
"if not os.path.exists(\"scripts/speech_to_text_eval.py\"):\n",
" !wget -P scripts/ https://raw.githubusercontent.com/NVIDIA/NeMo/stable/examples/asr/speech_to_text_eval.py"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "7TDTO3KLRfYb"
},
"outputs": [],
"source": [
"# Uncomment if you want to run the evaluation in offline mode\n",
"# if torch.cuda.is_available():\n",
"# !python scripts/speech_to_text_eval.py \\\n",
"# pretrained_name={pretrained_model_name} \\\n",
"# dataset_manifest={manifest} \\\n",
"# batch_size=32 \\\n",
"# amp=True \\\n",
"# use_cer=False\n",
"# else:\n",
"# print(\"CUDA not available, decoding full dataset would take too long.\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "76uo4Bg-UA2v"
},
"outputs": [],
"source": [
"# Clear up memory\n",
"torch.cuda.empty_cache()\n",
"gc.collect()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "DX-Arg9kUEfe"
},
"source": [
"## Buffer mechanism for streaming long audio files\n",
"\n",
"As you will note below, audio chunking and buffering are identical steps for CTC and Transducer models. As such, we will perform the setup steps in the next cell without significant elaboration.\n",
"\n",
"**Note**: For detailed information on how audio is chunked and evaluated, you should refer to the ``Streaming ASR`` tutorial."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "X2tKBEXIRzMl"
},
"outputs": [],
"source": [
"#@title Setup Audio Chunk Iterator\n",
"# A simple iterator class to return successive chunks of samples\n",
"class AudioChunkIterator():\n",
" def __init__(self, samples, frame_len, sample_rate):\n",
" self._samples = samples\n",
" self._chunk_len = chunk_len_in_secs*sample_rate\n",
" self._start = 0\n",
" self.output=True\n",
" \n",
" def __iter__(self):\n",
" return self\n",
" \n",
" def __next__(self):\n",
" if not self.output:\n",
" raise StopIteration\n",
" last = int(self._start + self._chunk_len)\n",
" if last <= len(self._samples):\n",
" chunk = self._samples[self._start: last]\n",
" self._start = last\n",
" else:\n",
" chunk = np.zeros([int(self._chunk_len)], dtype='float32')\n",
" samp_len = len(self._samples) - self._start\n",
" chunk[0:samp_len] = self._samples[self._start:len(self._samples)]\n",
" self.output = False\n",
" \n",
" return chunk\n",
"\n",
"# a helper function for extracting samples as a numpy array from the audio file\n",
"import soundfile as sf\n",
"def get_samples(audio_file, target_sr=16000):\n",
" with sf.SoundFile(audio_file, 'r') as f:\n",
" sample_rate = f.samplerate\n",
" samples = f.read()\n",
" if sample_rate != target_sr:\n",
" samples = librosa.core.resample(samples, orig_sr=sample_rate, target_sr=target_sr)\n",
" samples = samples.transpose()\n",
" return samples\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "l8j_F3GLUPrV"
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"from IPython.display import display, Audio\n",
"import numpy as np\n",
"\n",
"samples = get_samples(concat_audio_path)\n",
"sample_rate = model.preprocessor._cfg['sample_rate'] "
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "hrTq2XUcWBLo"
},
"source": [
"## Batched Chunk Processor\n",
"\n",
"First, we write a batched variant of the ``FeatureFrameBufferer`` that was written implicitly as part of the ``Streaming ASR`` tutorial.\n",
"\n",
"The difference between the two versions is - the ``FeatureFrameBufferer`` will buffer across frames of a single sample and then loop for each sample in the dataset. The `BatchedFeatureFrameBufferer` will buffer across the dependent frames of the independent batch of samples. This significantly improves the efficiency of buffered transducer inference."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "p8r96TdbVYBO"
},
"outputs": [],
"source": [
"#@title Setup batched feature chunk bufferer\n",
"\n",
"from nemo.collections.asr.parts.utils import streaming_utils\n",
"from torch.utils.data import DataLoader\n",
"\n",
"class BatchedFeatureFrameBufferer(streaming_utils.BatchedFeatureFrameBufferer):\n",
" \"\"\"\n",
" Batched variant of FeatureFrameBufferer where batch dimension is the independent audio samples.\n",
" \"\"\"\n",
"\n",
" def reset(self):\n",
" '''\n",
" Reset frame_history and decoder's state\n",
" '''\n",
" super().reset()\n",
" self.limit_frames = [None for _ in range(self.batch_size)]\n",
"\n",
" def get_batch_frames(self):\n",
" # Exit if all buffers of all samples have been processed\n",
" if all(self.signal_end):\n",
" return []\n",
"\n",
" # Otherwise sequentially process frames of each sample one by one.\n",
" batch_frames = []\n",
" for idx, frame_reader in enumerate(self.all_frame_reader):\n",
"\n",
" limit_frames = self.limit_frames[idx]\n",
" try:\n",
" if limit_frames is not None and self.buffer_number >= limit_frames:\n",
" raise StopIteration()\n",
"\n",
" frame = next(frame_reader)\n",
" frame = np.copy(frame)\n",
"\n",
" batch_frames.append(frame)\n",
" except StopIteration:\n",
" # If this sample has finished all of its buffers\n",
" # Set its signal_end flag, and assign it the id of which buffer index\n",
" # did it finish the sample (if not previously set)\n",
" # This will let the alignment module know which sample in the batch finished\n",
" # at which index.\n",
" batch_frames.append(None)\n",
" self.signal_end[idx] = True\n",
"\n",
" if self.signal_end_index[idx] is None:\n",
" self.signal_end_index[idx] = self.buffer_number\n",
"\n",
" self.buffer_number += 1\n",
" return batch_frames\n",
"\n",
" def set_frame_reader(self, frame_reader, idx, limit_frames=None):\n",
" self.all_frame_reader[idx] = frame_reader\n",
" self.signal_end[idx] = False\n",
" self.signal_end_index[idx] = None\n",
" self.limit_frames[idx] = limit_frames"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "YEJEaKBQXlHG"
},
"source": [
"## Batched and Buffered ASR Transducer\n",
"\n",
"Next, we will build the actual buffered transducer evaluation class. \n",
"\n",
"\n",
"Similar to Streaming CTC models, we pick tokens corresponding to one chunk length of audio for each buffer. The chunk within each buffer is chosen such that there is equal left and right context available to the audio within the chunk.\n",
"\n",
"\n",
"Since this is a batched variant of the ``Streaming ASR`` tutorial, we will subclass the required method and override the parts that we need to support batching across independent samples and buffering across dependent frames per sample in the batch.\n",
"\n",
"----\n",
"\n",
"Due to the complexity of the code, we will hide the cell below then explain the essential sections of the code as sub-sections. If at any point you would like to review the code itself, click `Show code` below."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "0z_Iff9HXjCv"
},
"outputs": [],
"source": [
"#@title Setup batched and buffered transducer ASR code \n",
"\n",
"import librosa\n",
"\n",
"def inplace_buffer_merge(buffer, data, timesteps, model):\n",
" \"\"\"\n",
" Merges the new text from the current frame with the previous text contained in the buffer.\n",
"\n",
" The alignment is based on a Longest Common Subsequence algorithm, with some additional heuristics leveraging\n",
" the notion that the chunk size is >= the context window. In case this assumptio is violated, the results of the merge\n",
" will be incorrect (or at least obtain worse WER overall).\n",
" \"\"\"\n",
" # If delay timesteps is 0, that means no future context was used. Simply concatenate the buffer with new data.\n",
" if timesteps < 1:\n",
" buffer += data\n",
" return buffer\n",
"\n",
" # If buffer is empty, simply concatenate the buffer and data.\n",
" if len(buffer) == 0:\n",
" buffer += data\n",
" return buffer\n",
"\n",
" # Concat data to buffer\n",
" buffer += data\n",
" return buffer\n",
"\n",
"\n",
"class BatchedFrameASRRNNT(streaming_utils.FrameBatchASR):\n",
" \"\"\"\n",
" Batched implementation of FrameBatchASR for RNNT models, where the batch dimension is independent audio samples.\n",
" \"\"\"\n",
"\n",
" def __init__(self, asr_model, frame_len=1.6, total_buffer=4.0,\n",
" batch_size=32, max_steps_per_timestep: int = 5, stateful_decoding: bool = False):\n",
" '''\n",
" Args:\n",
" asr_model: An RNNT model.\n",
" frame_len: frame's duration, seconds.\n",
" total_buffer: duration of total audio chunk size, in seconds.\n",
" batch_size: Number of independent audio samples to process at each step.\n",
" max_steps_per_timestep: Maximum number of tokens (u) to process per acoustic timestep (t).\n",
" stateful_decoding: Boolean whether to enable stateful decoding for preservation of state across buffers.\n",
" '''\n",
" super().__init__(asr_model, frame_len=frame_len, total_buffer=total_buffer, batch_size=batch_size)\n",
"\n",
" # OVERRIDES OF THE BASE CLASS\n",
" self.max_steps_per_timestep = max_steps_per_timestep\n",
" self.stateful_decoding = stateful_decoding\n",
"\n",
" self.all_alignments = [[] for _ in range(self.batch_size)]\n",
" self.all_preds = [[] for _ in range(self.batch_size)]\n",
" self.previous_hypotheses = None\n",
" self.batch_index_map = {\n",
" idx: idx for idx in range(self.batch_size)\n",
" } # pointer from global batch id : local sub-batch id\n",
"\n",
" try:\n",
" self.eos_id = self.asr_model.tokenizer.eos_id\n",
" except Exception:\n",
" self.eos_id = -1\n",
"\n",
" print(\"Performing Stateful decoding :\", self.stateful_decoding)\n",
"\n",
" # OVERRIDES\n",
" self.frame_bufferer = BatchedFeatureFrameBufferer(\n",
" asr_model=asr_model, frame_len=frame_len, batch_size=batch_size, total_buffer=total_buffer\n",
" )\n",
"\n",
" self.reset()\n",
"\n",
" def reset(self):\n",
" \"\"\"\n",
" Reset frame_history and decoder's state\n",
" \"\"\"\n",
" super().reset()\n",
"\n",
" self.all_alignments = [[] for _ in range(self.batch_size)]\n",
" self.all_preds = [[] for _ in range(self.batch_size)]\n",
" self.previous_hypotheses = None\n",
" self.batch_index_map = {idx: idx for idx in range(self.batch_size)}\n",
"\n",
" self.data_layer = [streaming_utils.AudioBuffersDataLayer() for _ in range(self.batch_size)]\n",
" self.data_loader = [\n",
" DataLoader(self.data_layer[idx], batch_size=1, collate_fn=streaming_utils.speech_collate_fn)\n",
" for idx in range(self.batch_size)\n",
" ]\n",
"\n",
" self.buffers = []\n",
"\n",
" def read_audio_file(self, audio_filepath: list, delay, model_stride_in_secs):\n",
" assert len(audio_filepath) == self.batch_size\n",
"\n",
" # Read in a batch of audio files, one by one\n",
" for idx in range(self.batch_size):\n",
" samples = get_samples(audio_filepath[idx])\n",
" samples = np.pad(samples, (0, int(delay * model_stride_in_secs * self.asr_model._cfg.sample_rate)))\n",
" frame_reader = streaming_utils.AudioFeatureIterator(samples, self.frame_len, self.raw_preprocessor, self.asr_model.device)\n",
" self.set_frame_reader(frame_reader, idx)\n",
"\n",
" def set_frame_reader(self, frame_reader, idx, limit_frames = None):\n",
" self.frame_bufferer.set_frame_reader(frame_reader, idx, limit_frames)\n",
"\n",
" @torch.no_grad()\n",
" def infer_logits(self):\n",
" frame_buffers = self.frame_bufferer.get_buffers_batch()\n",
"\n",
" while len(frame_buffers) > 0:\n",
" # While at least 1 sample has a buffer left to process\n",
" self.frame_buffers += frame_buffers[:]\n",
"\n",
" for idx, buffer in enumerate(frame_buffers):\n",
" if self.plot:\n",
" self.buffers.append(buffer[:][0])\n",
" self.data_layer[idx].set_signal(buffer[:])\n",
"\n",
" self._get_batch_preds()\n",
" frame_buffers = self.frame_bufferer.get_buffers_batch()\n",
"\n",
" @torch.no_grad()\n",
" def _get_batch_preds(self):\n",
" \"\"\"\n",
" Perform dynamic batch size decoding of frame buffers of all samples.\n",
"\n",
" Steps:\n",
" - Load all data loaders of every sample\n",
" - For all samples, determine if signal has finished.\n",
" - If so, skip calculation of mel-specs.\n",
" - If not, compute mel spec and length\n",
" - Perform Encoder forward over this sub-batch of samples. Maintain the indices of samples that were processed.\n",
" - If performing stateful decoding, prior to decoder forward, remove the states of samples that were not processed.\n",
" - Perform Decoder + Joint forward for samples that were processed.\n",
" - For all output RNNT alignment matrix of the joint do:\n",
" - If signal has ended previously (this was last buffer of padding), skip alignment\n",
" - Otherwise, recalculate global index of this sample from the sub-batch index, and preserve alignment.\n",
" - Same for preds\n",
" - Update indices of sub-batch with global index map.\n",
" - Redo steps until all samples were processed (sub-batch size == 0).\n",
" \"\"\"\n",
" device = self.asr_model.device\n",
"\n",
" data_iters = [iter(data_loader) for data_loader in self.data_loader]\n",
"\n",
" feat_signals = []\n",
" feat_signal_lens = []\n",
"\n",
" new_batch_keys = []\n",
" for idx in range(self.batch_size):\n",
" if self.frame_bufferer.signal_end[idx]:\n",
" continue\n",
"\n",
" batch = next(data_iters[idx])\n",
" feat_signal, feat_signal_len = batch\n",
" feat_signal, feat_signal_len = feat_signal.to(device), feat_signal_len.to(device)\n",
"\n",
" feat_signals.append(feat_signal)\n",
" feat_signal_lens.append(feat_signal_len)\n",
"\n",
" # preserve batch indices\n",
" new_batch_keys.append(idx)\n",
"\n",
" if len(feat_signals) == 0:\n",
" return\n",
"\n",
" feat_signal = torch.cat(feat_signals, 0)\n",
" feat_signal_len = torch.cat(feat_signal_lens, 0)\n",
"\n",
" del feat_signals, feat_signal_lens\n",
"\n",
" encoded, encoded_len = self.asr_model(processed_signal=feat_signal, processed_signal_length=feat_signal_len)\n",
"\n",
" # filter out partial hypotheses from older batch subset\n",
" if self.stateful_decoding and self.previous_hypotheses is not None:\n",
" new_prev_hypothesis = []\n",
" for new_batch_idx, global_index_key in enumerate(new_batch_keys):\n",
" old_pos = self.batch_index_map[global_index_key]\n",
" new_prev_hypothesis.append(self.previous_hypotheses[old_pos])\n",
" self.previous_hypotheses = new_prev_hypothesis\n",
"\n",
" best_hyp, _ = self.asr_model.decoding.rnnt_decoder_predictions_tensor(\n",
" encoded, encoded_len, return_hypotheses=True, partial_hypotheses=self.previous_hypotheses\n",
" )\n",
"\n",
" if self.stateful_decoding:\n",
" # preserve last state from hypothesis of new batch indices\n",
" self.previous_hypotheses = best_hyp\n",
"\n",
" for idx, hyp in enumerate(best_hyp):\n",
" global_index_key = new_batch_keys[idx] # get index of this sample in the global batch\n",
"\n",
" has_signal_ended = self.frame_bufferer.signal_end[global_index_key]\n",
"\n",
" if not has_signal_ended:\n",
" self.all_alignments[global_index_key].append(hyp.alignments)\n",
"\n",
" preds = [hyp.y_sequence for hyp in best_hyp]\n",
" for idx, pred in enumerate(preds):\n",
" global_index_key = new_batch_keys[idx] # get index of this sample in the global batch\n",
"\n",
" has_signal_ended = self.frame_bufferer.signal_end[global_index_key]\n",
" if not has_signal_ended:\n",
" self.all_preds[global_index_key].append(pred.cpu().numpy())\n",
"\n",
" if self.stateful_decoding:\n",
" # State resetting is being done on sub-batch only, global index information is not being updated\n",
" reset_states = self.asr_model.decoder.initialize_state(encoded)\n",
"\n",
" for idx, pred in enumerate(preds):\n",
" if len(pred) > 0 and pred[-1] == self.eos_id:\n",
" # reset states :\n",
" self.previous_hypotheses[idx].y_sequence = self.previous_hypotheses[idx].y_sequence[:-1]\n",
" self.previous_hypotheses[idx].dec_state = self.asr_model.decoder.batch_select_state(\n",
" reset_states, idx\n",
" )\n",
"\n",
" # Position map update\n",
" if len(new_batch_keys) != len(self.batch_index_map):\n",
" for new_batch_idx, global_index_key in enumerate(new_batch_keys):\n",
" self.batch_index_map[global_index_key] = new_batch_idx # let index point from global pos -> local pos\n",
"\n",
" del encoded, encoded_len\n",
" del best_hyp, pred\n",
"\n",
" def transcribe(\n",
" self, tokens_per_chunk: int, delay: int, plot=False,\n",
" ):\n",
" \"\"\"\n",
" Performs \"middle token\" alignment prediction using the buffered audio chunk.\n",
" \"\"\"\n",
" self.plot = plot\n",
" self.infer_logits()\n",
"\n",
" self.unmerged = [[] for _ in range(self.batch_size)]\n",
" for idx, alignments in enumerate(self.all_alignments):\n",
"\n",
" signal_end_idx = self.frame_bufferer.signal_end_index[idx]\n",
" if signal_end_idx is None:\n",
" raise ValueError(\"Signal did not end\")\n",
"\n",
" all_toks = []\n",
"\n",
" for a_idx, alignment in enumerate(alignments):\n",
" alignment = alignment[len(alignment) - 1 - delay : len(alignment) - 1 - delay + tokens_per_chunk]\n",
"\n",
" ids, toks = self._alignment_decoder(alignment, self.asr_model.tokenizer, self.blank_id)\n",
" all_toks.append(toks)\n",
"\n",
" if len(ids) > 0 and a_idx < signal_end_idx:\n",
" self.unmerged[idx] = inplace_buffer_merge(self.unmerged[idx], ids, delay, model=self.asr_model,)\n",
"\n",
" if plot:\n",
" for i, tok in enumerate(all_toks):\n",
" print(\"\\nGreedy labels collected from this buffer\")\n",
" print(tok[len(tok) - 1 - delay:len(tok) - 1 - delay + tokens_per_chunk]) \n",
" self.toks_unmerged += tok[len(tok) - 1 - delay:len(tok) - 1 - delay + tokens_per_chunk]\n",
" print(\"\\nTokens collected from succesive buffers before RNNT merge\")\n",
" print(self.toks_unmerged)\n",
"\n",
" output = []\n",
" for idx in range(self.batch_size):\n",
" output.append(self.greedy_merge(self.unmerged[idx]))\n",
" return output\n",
"\n",
" def _alignment_decoder(self, alignments, tokenizer, blank_id):\n",
" s = []\n",
" ids = []\n",
"\n",
" for t in range(len(alignments)):\n",
" for u in range(len(alignments[t])):\n",
" token_id = int(alignments[t][u][1])\n",
" if token_id != blank_id:\n",
" token = tokenizer.ids_to_tokens([token_id])[0]\n",
" s.append(token)\n",
" ids.append(token_id)\n",
"\n",
" else:\n",
" # blank token\n",
" pass\n",
"\n",
" return ids, s\n",
"\n",
" def greedy_merge(self, preds):\n",
" decoded_prediction = [p for p in preds]\n",
" hypothesis = self.asr_model.tokenizer.ids_to_text(decoded_prediction)\n",
" return hypothesis"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "1xB919nvhcet"
},
"source": [
"## Code Breakdown\n",
"\n",
"The following section is optional and describes the sub-sections of the code snippet above. It can improve understanding of how the code above works."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "2T0RVdzSXYF7"
},
"source": [
"### Code: `__init__`\n",
"\n",
"Transducers will operate on a batch of samples at once and then process the chunks of each of these samples independently with a single forward pass of the Encoder and then multiple autoregressive calls to the Prediction Network + Joint Network."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "U42JNBycYNg-"
},
"source": [
"### Code: `_alignment_decoder(alignments, tokenizer, blank_id)`\n",
"\n",
"Since the models we are evaluating are trained with sub-word encoding, we will need to decode the tokens to a text format from the 2-dimensional dangling array, which represents the alignments of the transducer's prediction.\n",
"\n",
"**Note**: The alignment is a 2-dimensional dangling array with the shape `Ti x Uj`; there can be any number of `Uj` per `Ti`. The alignment also contains the id for the `Transducer Blank` token - which we need to remove during decoding to prevent the tokenizer from trying to decode an invalid id. An example of a transducer alignment will be presented at the end of the notebook."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Lg_2yywrZWry"
},
"source": [
"### Code: `_get_batch_preds()`\n",
"\n",
"The core of the transducer model's decoding step per chunk of provided audio for all independent audio samples. We batch together the independent acoustic segments through the encoder and then batch process the prediction net + joint net to improve the GPU efficiency of decoding.\n",
"\n",
"To further improve efficiency, we will perform adaptive batching during evaluation. In adaptive batching, once a sample has finished processing its audio sequence, it will be removed from the global set of all samples that should be processed. After each chunk is processed of each sample, the completed samples are removed from the next round of decoding.\n",
"\n",
"------\n",
"\n",
"Due to this additional complexity, we break down a few steps of this process below - "
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "EAa0Ko7aa8jx"
},
"source": [
"#### Select the subset of samples that need to finish processing\n",
"\n",
"We will loop through all samples, checking if the sample has finished processing or not. If not, it will be added to the pool of samples that must be processed. These samples are passed through the encoder.\n",
"\n",
"```python\n",
"new_batch_keys = []\n",
"for idx in range(self.batch_size):\n",
" if self.frame_bufferer.signal_end[idx]:\n",
" continue\n",
" batch = next(data_iters[idx])\n",
" ...\n",
" new_batch_keys.append(idx)\n",
"encoded, encoded_len = self.asr_model(processed_signal=feat_signal, processed_signal_length=feat_signal_len)\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "-QzUgpIsaxCt"
},
"source": [
"#### Update partial states of the model and decode the prediction + joint steps\n",
"\n",
"If stateful decoding is being performed, update the states partially. In this step, we select the indices of states that existed in this sub-batch only.\n",
"\n",
"After this, we perform regular transducer decoding of the Prediction Network + Joint Network. Since it is being done on a subset of samples, it is much faster than padded decoding.\n",
"\n",
"```python\n",
"best_hyp, _ = self.asr_model.decoding.rnnt_decoder_predictions_tensor(\n",
" encoded, encoded_len, return_hypotheses=True, partial_hypotheses=self.previous_hypotheses\n",
")\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "69tNXxtfcYBq"
},
"source": [
"#### Preserve the alignments\n",
"\n",
"Now that we have the model's hypotheses, we need to preserve the alignments in the correct global index. Remember, we originally had a batch size (say B), but now we performed an inference step over just a sub-batch (say $B'$; $B' ≤ B$), so we need to de-reference the ids of this sub-batch $B'$ to the actual ids in $B$. \n",
"\n",
"We utilize `global_index_key = new_batch_keys[idx]` which we built when we were sub-sampling the chunks themselves.\n",
"\n",
"```python\n",
" for idx, hyp in enumerate(best_hyp):\n",
" global_index_key = new_batch_keys[idx] # get index of this sample in the global batch\n",
" has_signal_ended = self.frame_bufferer.signal_end[global_index_key]\n",
" if not has_signal_ended:\n",
" self.all_alignments[global_index_key].append(hyp.alignments)\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "BmhrYC9XdoeB"
},
"source": [
"#### Update the index mapping from local sub-batch to global batch\n",
"\n",
"If, in the current step, the sub-batch $B'$ was smaller than the original batch size $B$, then we need to update the index that is tracked by `self.batch_index_map`.\n",
"\n",
"`self.batch_index_map` is a mapping from the global batch index to the current local batch index. \n",
"\n",
"```python\n",
"# Position map update\n",
"if len(new_batch_keys) != len(self.batch_index_map):\n",
" for new_batch_idx, global_index_key in enumerate(new_batch_keys):\n",
" self.batch_index_map[global_index_key] = new_batch_idx # let index point from global pos -> local pos\n",
"\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "VIfDE19CeXE5"
},
"source": [
"------\n",
"You may wonder, why do we need to preserve this information? \n",
"\n",
"Consider the case where you have five samples in the original global batch size $B$. Let their ids be - `[0, 1, 2, 3, 4]`.\n",
"\n",
"After a few steps, the ids `2` and `3` finished processing and are no longer part of sub-batch $B'$. So the new sub-batch is `[0, 1, 4]`.\n",
"\n",
"Now - index `sub_batch[2]` no longer corresponds to sample `[2]` but instead to sample `[4]`. Therefore, this information is preserved in `self.batch_index_map` where the key is the global index id (0-5) and the value is the index of this sample in the current sub-batch (0,1,4).\n",
"\n",
"-----\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ndf5as2Zg1tP"
},
"source": [
"### Code: `transcribe(tokens_per_chunk, delay)`\n",
"\n",
"The method that actually performs transcriptions on chunks of audio segments. It loops two layers - the samples per batch and the alignments per chunk in each of these samples.\n",
"\n",
"\n",
"```python\n",
"self.unmerged = [[] for _ in range(self.batch_size)]\n",
"for idx, alignments in enumerate(self.all_alignments):\n",
" signal_end_idx = self.frame_bufferer.signal_end_index[idx]\n",
" for a_idx, alignment in enumerate(alignments):\n",
" # The core of the \"middle token\" algorithm for buffered ASR.\n",
" alignment = alignment[len(alignment) - 1 - delay : len(alignment) - 1 - delay + tokens_per_chunk]\n",
" ids, toks = self._alignment_decoder(alignment, self.asr_model.tokenizer, self.blank_id)\n",
" if len(ids) > 0 and a_idx < signal_end_idx:\n",
" self.unmerged[idx] = inplace_buffer_merge(self.unmerged[idx], ids, delay, model=self.asr_model)\n",
"...\n",
"output = []\n",
"for idx in range(self.batch_size):\n",
" output.append(self.greedy_merge(self.unmerged[idx]))\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "G_oL_mwnfnkj"
},
"source": [
"## Evaluation\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "1UT0MigeYshQ"
},
"source": [
"Let's call the decoder with a few buffers we create from our long audio file to see how this chunk-based decoder comes together. Some interesting experiments to try would be to see how changing sizes of the chunk and the context affect transcription accuracy."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "0vr1dg-MXK_4"
},
"outputs": [],
"source": [
"chunk_len_in_secs: float = 8.0\n",
"context_len_in_secs: float = 1.0\n",
"\n",
"max_steps_per_timestep: int = 5\n",
"stateful_decoding: bool = False\n",
" \n",
"\n",
"##########################################################################\n",
"buffer_len_in_secs = chunk_len_in_secs + 2* context_len_in_secs\n",
"\n",
"n_buffers = 5\n",
"\n",
"buffer_len = int(sample_rate*buffer_len_in_secs)\n",
"sampbuffer = np.zeros([buffer_len], dtype=np.float32)\n",
"\n",
"chunk_reader = AudioChunkIterator(samples, chunk_len_in_secs, sample_rate)\n",
"chunk_len = int(sample_rate*chunk_len_in_secs)\n",
"count = 0\n",
"buffer_list = []\n",
"for chunk in chunk_reader:\n",
" count +=1\n",
" sampbuffer[:-chunk_len] = sampbuffer[chunk_len:]\n",
" sampbuffer[-chunk_len:] = chunk\n",
" buffer_list.append(np.array(sampbuffer))\n",
"\n",
" plt.plot(buffer_list[-1])\n",
" plt.show()\n",
" \n",
" display(Audio(sampbuffer, rate=16000))\n",
" if count >= n_buffers:\n",
" break\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZZItpaiergK1"
},
"source": [
"## Change Decoding Strategy for Transducer Model\n",
"\n",
"Below, we will change the decoding strategy for transducer models to preserve the alignments during autoregressive predictions. This will enable us to easily compute the \"middle token\" during decoding."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Ngrw2L2Krfbc"
},
"outputs": [],
"source": [
"# Change Decoding Config\n",
"from omegaconf import OmegaConf, open_dict\n",
"\n",
"decoding_cfg = model.cfg.decoding\n",
"with open_dict(decoding_cfg):\n",
" if stateful_decoding: # Very slow procedure, avoid unless really needed\n",
" decoding_cfg.strategy = \"greedy\"\n",
" else:\n",
" decoding_cfg.strategy = \"greedy_batch\"\n",
"\n",
" decoding_cfg.preserve_alignments = True # required to compute the middle token for transducers.\n",
" decoding_cfg.fused_batch_size = -1 # temporarily stop fused batch during inference.\n",
"\n",
"model.change_decoding_strategy(decoding_cfg)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "6CRTw38bY35k"
},
"outputs": [],
"source": [
"stride = 4 # 8 for ContextNet\n",
"asr_decoder = BatchedFrameASRRNNT(model, frame_len=chunk_len_in_secs, total_buffer=buffer_len_in_secs, \n",
" batch_size=1, \n",
" max_steps_per_timestep=max_steps_per_timestep, \n",
" stateful_decoding=stateful_decoding)\n",
"\n",
"samples = get_samples(concat_audio_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "VIH12cFfbzn8"
},
"outputs": [],
"source": [
"import tqdm\n",
"import math\n",
"\n",
"def transcribe_buffers(asr_decoder, samples, num_frames, chunk_len_in_secs, buffer_len_in_secs, model_stride, plot=False):\n",
"\n",
" model.freeze()\n",
" model_stride_in_secs = asr_decoder.asr_model.cfg.preprocessor.window_stride * model_stride\n",
" tokens_per_chunk = math.ceil(chunk_len_in_secs / model_stride_in_secs)\n",
" mid_delay = math.ceil((chunk_len_in_secs + (buffer_len_in_secs - chunk_len_in_secs) / 2) / model_stride_in_secs)\n",
"\n",
" batch_size = asr_decoder.batch_size # Since only one sample buffers are available, batch size = 1\n",
"\n",
" assert batch_size == 1\n",
"\n",
" with torch.inference_mode():\n",
" with torch.cuda.amp.autocast():\n",
" asr_decoder.reset()\n",
" asr_decoder.sample_offset = 0\n",
"\n",
" frame_reader = streaming_utils.AudioFeatureIterator(samples.copy(), asr_decoder.frame_len, asr_decoder.raw_preprocessor, asr_decoder.asr_model.device)\n",
" asr_decoder.set_frame_reader(frame_reader, idx=0, limit_frames=num_frames if num_frames is not None else None)\n",
"\n",
" transcription = asr_decoder.transcribe(tokens_per_chunk, mid_delay, plot=plot)\n",
" \n",
" return transcription"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ObAXQRQjjTUt"
},
"outputs": [],
"source": [
"transcription = transcribe_buffers(asr_decoder, samples, n_buffers, chunk_len_in_secs, buffer_len_in_secs, stride, plot=True)[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "dy6YyKoowckV"
},
"outputs": [],
"source": [
"print()\n",
"print(\"Transcription :\")\n",
"print(transcription)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "MHUN6q-NwhMK"
},
"source": [
"# Transcribe the entire concatenated audio\n",
"\n",
"Finally, we will decode the entire 15-minute audio clip with the settings chosen above. It should take just a few seconds to transcribe the entire clip with large chunk sizes, but it increases significantly for shorter chunk sizes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ucFHfwyKk5oN"
},
"outputs": [],
"source": [
"# WER calculation\n",
"from nemo.collections.asr.metrics.wer import word_error_rate\n",
"# Collect all buffers from the audio file\n",
"sampbuffer = np.zeros([buffer_len], dtype=np.float32)\n",
"\n",
"chunk_reader = AudioChunkIterator(samples, chunk_len_in_secs, sample_rate)\n",
"buffer_list = []\n",
"for chunk in chunk_reader:\n",
" sampbuffer[:-chunk_len] = sampbuffer[chunk_len:]\n",
" sampbuffer[-chunk_len:] = chunk\n",
" buffer_list.append(np.array(sampbuffer))\n",
"\n",
"asr_decoder = BatchedFrameASRRNNT(model, frame_len=chunk_len_in_secs, total_buffer=buffer_len_in_secs, \n",
" batch_size=1, \n",
" max_steps_per_timestep=max_steps_per_timestep, \n",
" stateful_decoding=stateful_decoding)\n",
"\n",
"transcription = transcribe_buffers(asr_decoder, samples, None, chunk_len_in_secs, buffer_len_in_secs, stride, plot=False)[0]\n",
"wer = word_error_rate(hypotheses=[transcription], references=[ref_transcript], use_cer=False)\n",
"\n",
"print(f\"WER: {round(wer*100,2)}%\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "lLyqdZf_0bhr"
},
"source": [
"# Find the differences in the transcript\n",
"\n",
"Word Error Rate is a great tool to measure the performance of the model, but we can go further and debug exactly where mistakes were made. This will further help us determine if the transcript was incorrect due to the merge algorithm rather than the model making any mistake during transcription."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "-ZI2_j7xxVNu"
},
"outputs": [],
"source": [
"#@title Run to setup Text Diff\n",
"import difflib\n",
"from typing import List, Any, Callable, Tuple, Union\n",
"from itertools import zip_longest\n",
"import html\n",
"import re\n",
"\n",
"Token = str\n",
"TokenList = List[Token]\n",
"\n",
"whitespace = re.compile('\\s+')\n",
"end_sentence = re.compile('[.]\\s+')\n",
"\n",
"def tokenize(s:str) -> TokenList:\n",
" '''Split a string into tokens'''\n",
" return whitespace.split(s)\n",
"\n",
"def untokenize(ts:TokenList) -> str:\n",
" '''Join a list of tokens into a string'''\n",
" return ' '.join(ts)\n",
"\n",
"def sentencize(s:str) -> TokenList:\n",
" '''Split a string into a list of sentences'''\n",
" return end_sentence.split(s)\n",
"\n",
"def unsentencise(ts:TokenList) -> str:\n",
" '''Join a list of sentences into a string'''\n",
" return '. '.join(ts)\n",
"\n",
"def html_unsentencise(ts:TokenList) -> str:\n",
" '''Joing a list of sentences into HTML for display'''\n",
" return ''.join(f'<p>{t}</p>' for t in ts)\n",
"\n",
"def mark_text(text:str) -> str:\n",
" return f'<span style=\"color: red;\">{text}</span>'\n",
" \n",
"def mark_span(text:TokenList) -> TokenList:\n",
" if len(text) > 0:\n",
" text[0] = '<span style=\"background: #69E2FB;\">' + text[0]\n",
" text[-1] += '</span>'\n",
" return text\n",
"\n",
"def markup_diff(a:TokenList, b:TokenList,\n",
" mark=mark_span,\n",
" default_mark = lambda x: x,\n",
" isjunk=None) -> Tuple[TokenList, TokenList]:\n",
" \"\"\"Returns a and b with any differences processed by mark\n",
"\n",
" Junk is ignored by the differ\n",
" \"\"\"\n",
" seqmatcher = difflib.SequenceMatcher(isjunk=isjunk, a=a, b=b, autojunk=False)\n",
" out_a, out_b = [], []\n",
" for tag, a0, a1, b0, b1 in seqmatcher.get_opcodes():\n",
" markup = default_mark if tag == 'equal' else mark\n",
" out_a += markup(a[a0:a1])\n",
" out_b += markup(b[b0:b1])\n",
" assert len(out_a) == len(a)\n",
" assert len(out_b) == len(b)\n",
" return out_a, out_b\n",
"\n",
"\n",
"def align_seqs(a: TokenList, b: TokenList, fill:Token='') -> Tuple[TokenList, TokenList]:\n",
" out_a, out_b = [], []\n",
" seqmatcher = difflib.SequenceMatcher(a=a, b=b, autojunk=False)\n",
" for tag, a0, a1, b0, b1 in seqmatcher.get_opcodes():\n",
" delta = (a1 - a0) - (b1 - b0)\n",
" out_a += a[a0:a1] + [fill] * max(-delta, 0)\n",
" out_b += b[b0:b1] + [fill] * max(delta, 0)\n",
" assert len(out_a) == len(out_b)\n",
" return out_a, out_b\n",
"\n",
"\n",
"def html_sidebyside(a, b):\n",
" # Set the panel display\n",
" out = '<div style=\"display: grid;grid-template-columns: 1fr 1fr;grid-gap: 20px;\">'\n",
" # There's some CSS in Jupyter notebooks that makes the first pair unalign. This is a workaround\n",
" out += '<p></p><p></p>'\n",
" for left, right in zip_longest(a, b, fillvalue=''):\n",
" out += f'<p>{left}</p>'\n",
" out += f'<p>{right}</p>'\n",
" out += '</div>'\n",
" return out\n",
"\n",
"def html_diffs(a, b):\n",
" a = html.escape(a)\n",
" b = html.escape(b)\n",
"\n",
" out_a, out_b = [], []\n",
" for sent_a, sent_b in zip(*align_seqs(sentencize(a), sentencize(b))):\n",
" mark_a, mark_b = markup_diff(tokenize(sent_a), tokenize(sent_b))\n",
" out_a.append(untokenize(mark_a))\n",
" out_b.append(untokenize(mark_b))\n",
"\n",
" return html_sidebyside(out_a, out_b)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "P9jRGFIw0nDp"
},
"outputs": [],
"source": [
"from IPython.display import HTML\n",
"\n",
"def show_diffs(a, b):\n",
" display(HTML(html_diffs(a,b)))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "CcKJrq3-024_"
},
"outputs": [],
"source": [
"show_diffs(ref_transcript, transcription)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "NBSX6HS44pBR"
},
"source": [
"# Extra: Middle token alignment in Transducers\n",
"\n",
"The middle token algorithm is a general algorithm that works even for non-causal offline models relatively well. On the other hand, it requires larger chunk sizes and larger buffer sizes (which causes some latency).\n",
"\n",
"For CTC, it is straightforward to decode the text from the log probabilities - take argmax. However, transducers have a much more complicated decoding technique, and taking middle token alignment is not so straightforward.\n",
"\n",
"So below, we will take a deep dive into what transducer alignments are and how we can use them to perform middle token selection."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "wBxrDbyq5cv3"
},
"source": [
"\n",
"\n",
"```python\n",
"def transcribe(self, tokens_per_chunk: int, delay: int, plot=False):\n",
" ...\n",
" all_toks = []\n",
" for a_idx, alignment in enumerate(alignments):\n",
" alignment = alignment[len(alignment) - 1 - delay : len(alignment) - 1 - delay + tokens_per_chunk]\n",
" ids, toks = self._alignment_decoder(alignment, self.asr_model.tokenizer, self.blank_id)\n",
" all_toks.append(toks)\n",
" ...\n",
"\n",
"\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "pN-HFw8i7wos"
},
"outputs": [],
"source": [
"from nemo.collections.asr.parts.utils.manifest_utils import read_manifest\n",
"\n",
"manifest_data = read_manifest(manifest)\n",
"print(f\"Read {len(manifest_data)} samples from manifest {manifest}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "YKTYXU_38D__"
},
"outputs": [],
"source": [
"sample_idx = 0\n",
"audio_filepath = manifest_data[sample_idx]['audio_filepath']\n",
"text = manifest_data[sample_idx]['text']\n",
"\n",
"print(\"Audio filepath :\", audio_filepath)\n",
"print(\"Ground truth text:\", text)\n",
"print(\"Duration :\", manifest_data[sample_idx][\"duration\"])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "MxRSKKX9qsby"
},
"source": [
"------\n",
"\n",
"To track the alignment array, we need to let the Transducer Decoding strategy know to preserve the alignments. Since it is done during greedy / beam decoding, it can be simply done by setting a flag and updating the decoding strategy."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "WFUGpH2W8Oke"
},
"outputs": [],
"source": [
"decoding_cfg = model.cfg.decoding\n",
"\n",
"with open_dict(decoding_cfg):\n",
" decoding_cfg.preserve_alignments = True # required to compute the middle token for transducers.\n",
" decoding_cfg.fused_batch_size = -1 # temporarily stop fused batch during inference.\n",
"\n",
"model.change_decoding_strategy(decoding_cfg)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "GO86ej_V8gbM"
},
"outputs": [],
"source": [
"greedy_hypotheses, beam_hypotheses = model.transcribe([audio_filepath], return_hypotheses=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "CYPg3T3K8ffV"
},
"outputs": [],
"source": [
"hyp = greedy_hypotheses[0] # only one sample in batch\n",
"print(\"Hypothesis text :\", hyp.text)\n",
"print(\"Ground truth text:\", text)\n",
"\n",
"wer = word_error_rate(hypotheses=[hyp.text], references=[text], use_cer=False)\n",
"print(\"Word error rate of audio :\", wer)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fgDkjlDX-hym"
},
"source": [
"# Print alignments\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "SjjQ9ODz-No6"
},
"outputs": [],
"source": [
"alignments = hyp.alignments"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "1gqFfQwZ-xpk"
},
"source": [
"Let's calculate the alignment grid. We will de-tokenize the sub-word token if it is a valid index in the vocabulary and use '' as a placeholder for the Transducer Blank token.\n",
"\n",
"Note that each timestep here is (roughly) 40 milli-seconds timestamp (since the window stride is 10 ms, and Conformer has 4x stride). The resolution of the model differs based on the stride of the model - QuartzNet has 2x stride (20 ms), Conformer has 4x stride (40 ms), and ContextNet has 8x stride (80 ms).\n",
"\n",
"Note: You can modify the value of config.model.loss.warprnnt_numba_kwargs.fastemit_lambda before training and see an impact on final alignment latency! For a tutorial to train your Transducer models, refer to [ASR with Transducers in NeMo](https://colab.research.google.com/github/NVIDIA/NeMo/blob/stable/tutorials/asr/ASR_with_Transducers.ipynb)."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Zvyh0ATNrLhQ"
},
"source": [
"------\n",
"\n",
"First, let's listen to the audio clip itself. We can then determine if the text transcription is being accurately transcribed."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "9njFbF4P-qNL"
},
"outputs": [],
"source": [
"display(Audio(filename=audio_filepath, rate=model.cfg.sample_rate))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "82NLN1ZC-wCM"
},
"outputs": [],
"source": [
"model_stride = 4 # 4 for Conformers; 8 for ContextNet / Citrinet;\n",
"window_stride = model.cfg.preprocessor.window_stride\n",
"\n",
"time_ms = 0.0 # time in ms\n",
"\n",
"# Compute the alignment grid\n",
"for ti in range(len(alignments)):\n",
" t_u = []\n",
" for uj in range(len(alignments[ti])):\n",
" logprobs, token = alignments[ti][uj]\n",
" token = token.to('cpu').numpy().tolist()\n",
" decoded_token = model.decoding.decode_ids_to_tokens([token])[0] if token != model.decoding.blank_id else '' # token at index len(vocab) == RNNT blank token\n",
" t_u.append(decoded_token)\n",
" \n",
" time_ms += model_stride * window_stride\n",
" print(f\"Tokens at timestep {ti} (time={time_ms:0.2f} s) = {t_u}\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "mEArX3Khrbuu"
},
"source": [
"-------\n",
"\n",
"You can see that there were roughly as many timesteps as the original duration of the audio. Since the transducer alignment is characterized as a Ti x Uj dangling array, we can treat Ti as the equivalent to the timestep of the acoustic signal itself. Therefore, if we take \"middle\" slices over the Ti dimension during decoding, we can effectively compute the middle token alignment even for transducer models!"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "y6ZhP-ENsMHH"
},
"source": [
"# Final Notes\n",
"\n",
"Now, anyone can perform long audio transcription using any NeMo transducer model. You could even try to modify the chunk and buffer sizes to try to stream these models.\n",
"\n",
"For further references on training your own transducer models, please refer to [ASR with Transducers](https://github.com/NVIDIA/NeMo/blob/stable/tutorials/asr/ASR_with_Transducers.ipynb) tutorial."
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [],
"name": "Buffered_Transducer_Inference.ipynb",
"provenance": [],
"toc_visible": true
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 1
}
|