File size: 51,369 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "SUOXg71A3w78"
},
"outputs": [],
"source": [
"\"\"\"\n",
"You can run either this notebook locally (if you have all the dependencies and a GPU) or on Google Colab.\n",
"\n",
"Instructions for setting up Colab are as follows:\n",
"1. Open a new Python 3 notebook.\n",
"2. Import this notebook from GitHub (File -> Upload Notebook -> \"GITHUB\" tab -> copy/paste GitHub URL)\n",
"3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator)\n",
"4. Run this cell to set up dependencies.\n",
"5. Restart the runtime (Runtime -> Restart Runtime) for any upgraded packages to take effect\n",
"\"\"\"\n",
"# If you're using Google Colab and not running locally, run this cell.\n",
"import os\n",
"\n",
"# Install dependencies\n",
"!pip install wget\n",
"!apt-get install sox libsndfile1 ffmpeg\n",
"!pip install text-unidecode\n",
"!pip install matplotlib>=3.3.2\n",
"\n",
"## Install NeMo\n",
"BRANCH = 'r1.17.0'\n",
"!python -m pip install git+https://github.com/NVIDIA/NeMo.git@$BRANCH#egg=nemo_toolkit[all]\n",
"\n",
"## Grab the config we'll use in this example\n",
"!mkdir configs\n",
"!wget -P configs/ https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/examples/asr/conf/contextnet_rnnt/contextnet_rnnt.yaml\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "uj-UnhKk47oW"
},
"outputs": [],
"source": [
"# In a conda environment, you would use the following command\n",
"# Update Numba to > 0.53\n",
"# conda install -c conda-forge numba\n",
"# or\n",
"# conda update -c conda-forge numba\n",
"\n",
"# For pip based environments,\n",
"# Update Numba to > 0.53\n",
"!pip install --upgrade numba"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "RGNuJWr66C38"
},
"source": [
"# Automatic Speech Recognition with Transducer Models\n",
"\n",
"This notebook is a basic tutorial for creating a Transducer ASR model and then training it on a small dataset (AN4). It includes discussion relevant to reducing memory issues when training such models and demonstrates how to change the decoding strategy after training. Finally, it also provides a brief glimpse of extracting alignment information from a trained Transducer model.\n",
"\n",
"As we will see in this tutorial, apart from the differences in the config and the class used to instantiate the model, nearly all steps are precisely similar to any CTC-based model training. Many concepts such as data loader setup, optimization setup, pre-trained checkpoint weight loading will be nearly identical between CTC and Transducer models.\n",
"\n",
"In essence, NeMo makes it seamless to take a config for a CTC ASR model, add in a few components related to Transducers (often without any modifications) and use a different class to instantiate a Transducer model!\n",
"\n",
"--------\n",
"\n",
"**Note**: It is assumed that the previous tutorial - \"Intro-to-Transducers\" has been reviewed, and there is some familiarity with the config components of transducer models.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eAqCcJ-T6C6k"
},
"source": [
"# Preparing the dataset\n",
"\n",
"In this tutorial, we will be utilizing the `AN4`dataset - also known as the Alphanumeric dataset, which was collected and published by Carnegie Mellon University. It consists of recordings of people spelling out addresses, names, telephone numbers, etc., one letter or number at a time and their corresponding transcripts. We choose to use AN4 for this tutorial because it is relatively small, with 948 training and 130 test utterances, and so it trains quickly. \n",
"\n",
"Let's first download the preparation script from NeMo's scripts directory -"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "pu4n4GkjAo9i"
},
"outputs": [],
"source": [
"import os\n",
"\n",
"if not os.path.exists(\"scripts/\"):\n",
" os.makedirs(\"scripts\")\n",
"\n",
"if not os.path.exists(\"scripts/process_an4_data.py\"):\n",
" !wget -P scripts/ https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/scripts/dataset_processing/process_an4_data.py"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_QGyusFJBUqH"
},
"source": [
"------\n",
"\n",
"Download and prepare the two subsets of `AN 4`"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "yV1rJcH6ApDo"
},
"outputs": [],
"source": [
"import wget\n",
"import tarfile \n",
"import subprocess \n",
"import glob\n",
"\n",
"data_dir = \"datasets\"\n",
"\n",
"if not os.path.exists(data_dir):\n",
" os.makedirs(data_dir)\n",
"\n",
"# Download the dataset. This will take a few moments...\n",
"print(\"******\")\n",
"if not os.path.exists(data_dir + '/an4_sphere.tar.gz'):\n",
" an4_url = 'https://dldata-public.s3.us-east-2.amazonaws.com/an4_sphere.tar.gz' # for the original source, please visit http://www.speech.cs.cmu.edu/databases/an4/an4_sphere.tar.gz \n",
" an4_path = wget.download(an4_url, data_dir)\n",
" print(f\"Dataset downloaded at: {an4_path}\")\n",
"else:\n",
" print(\"Tarfile already exists.\")\n",
" an4_path = data_dir + '/an4_sphere.tar.gz'\n",
"\n",
"\n",
"if not os.path.exists(data_dir + '/an4/'):\n",
" # Untar and convert .sph to .wav (using sox)\n",
" tar = tarfile.open(an4_path)\n",
" tar.extractall(path=data_dir)\n",
"\n",
" print(\"Converting .sph to .wav...\")\n",
" sph_list = glob.glob(data_dir + '/an4/**/*.sph', recursive=True)\n",
" for sph_path in sph_list:\n",
" wav_path = sph_path[:-4] + '.wav'\n",
" cmd = [\"sox\", sph_path, wav_path]\n",
" subprocess.run(cmd)\n",
"\n",
"print(\"Finished conversion.\\n******\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# --- Building Manifest Files --- #\n",
"import json\n",
"import librosa\n",
"\n",
"# Function to build a manifest\n",
"def build_manifest(transcripts_path, manifest_path, wav_path):\n",
" with open(transcripts_path, 'r') as fin:\n",
" with open(manifest_path, 'w') as fout:\n",
" for line in fin:\n",
" # Lines look like this:\n",
" # <s> transcript </s> (fileID)\n",
" transcript = line[: line.find('(')-1].lower()\n",
" transcript = transcript.replace('<s>', '').replace('</s>', '')\n",
" transcript = transcript.strip()\n",
"\n",
" file_id = line[line.find('(')+1 : -2] # e.g. \"cen4-fash-b\"\n",
" audio_path = os.path.join(\n",
" data_dir, wav_path,\n",
" file_id[file_id.find('-')+1 : file_id.rfind('-')],\n",
" file_id + '.wav')\n",
"\n",
" duration = librosa.core.get_duration(filename=audio_path)\n",
"\n",
" # Write the metadata to the manifest\n",
" metadata = {\n",
" \"audio_filepath\": audio_path,\n",
" \"duration\": duration,\n",
" \"text\": transcript\n",
" }\n",
" json.dump(metadata, fout)\n",
" fout.write('\\n')\n",
"\n",
"# Building Manifests\n",
"print(\"******\")\n",
"train_transcripts = os.path.join(data_dir, 'an4/etc/an4_train.transcription')\n",
"train_manifest = os.path.join(data_dir, 'an4/train_manifest.json')\n",
"if not os.path.isfile(train_manifest):\n",
" build_manifest(train_transcripts, train_manifest, 'an4/wav/an4_clstk')\n",
" print(\"Training manifest created.\")\n",
"\n",
"test_transcripts = os.path.join(data_dir, 'an4/etc/an4_test.transcription')\n",
"test_manifest = os.path.join(data_dir, 'an4/test_manifest.json')\n",
"if not os.path.isfile(test_manifest):\n",
" build_manifest(test_transcripts, test_manifest, 'an4/wav/an4test_clstk')\n",
" print(\"Test manifest created.\")\n",
"print(\"***Done***\") \n",
"# Manifest filepaths\n",
"TRAIN_MANIFEST = train_manifest\n",
"TEST_MANIFEST = test_manifest"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "2sSycX_VJsCI"
},
"source": [
"## Preparing the tokenizer\n",
"\n",
"Now that we have a dataset ready, we need to decide whether to use a character-based model or a sub-word-based model. For completeness' sake, we will use a tokenizer based model so that we can leverage a modern encoder architecture like ContextNet or Conformer-T."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "i2hD4LkoJvrx"
},
"outputs": [],
"source": [
"if not os.path.exists(\"scripts/process_asr_text_tokenizer.py\"):\n",
" !wget -P scripts/ https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/scripts/tokenizers/process_asr_text_tokenizer.py"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "dQdeiafdKE4A"
},
"source": [
"-----\n",
"\n",
"Since the dataset is tiny, we can use a small SentencePiece based tokenizer. We always delete the tokenizer directory so any changes to the manifest files are always replicated in the tokenizer."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "i6Jzpt6UJvuI"
},
"outputs": [],
"source": [
"VOCAB_SIZE = 32 # can be any value above 29\n",
"TOKENIZER_TYPE = \"spe\" # can be wpe or spe\n",
"SPE_TYPE = \"unigram\" # can be bpe or unigram\n",
"\n",
"# ------------------------------------------------------------------- #\n",
"!rm -r tokenizers/\n",
"\n",
"if not os.path.exists(\"tokenizers\"):\n",
" os.makedirs(\"tokenizers\")\n",
"\n",
"!python scripts/process_asr_text_tokenizer.py \\\n",
" --manifest=$TRAIN_MANIFEST \\\n",
" --data_root=\"tokenizers\" \\\n",
" --tokenizer=$TOKENIZER_TYPE \\\n",
" --spe_type=$SPE_TYPE \\\n",
" --no_lower_case \\\n",
" --log \\\n",
" --vocab_size=$VOCAB_SIZE"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "JHDZswN6LIBJ"
},
"outputs": [],
"source": [
"# Tokenizer path\n",
"if TOKENIZER_TYPE == 'spe':\n",
" TOKENIZER = os.path.join(\"tokenizers\", f\"tokenizer_spe_{SPE_TYPE}_v{VOCAB_SIZE}\")\n",
" TOKENIZER_TYPE_CFG = \"bpe\"\n",
"else:\n",
" TOKENIZER = os.path.join(\"tokenizers\", f\"tokenizer_wpe_v{VOCAB_SIZE}\")\n",
" TOKENIZER_TYPE_CFG = \"wpe\""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "j8tx2m2w6C87"
},
"source": [
"# Preparing a Transducer Model\n",
"\n",
"Now that we have the dataset and tokenizer prepared, let us begin by setting up the config of the Transducer model! In this tutorial, we will build a slightly modified ContextNet architecture (which is obtained from the paper [ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context](https://arxiv.org/abs/2005.03191)).\n",
"\n",
"We can note that many of the steps here are identical to the setup of a CTC model!\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "pQETBCSML0Us"
},
"source": [
"## Prepare the config\n",
"\n",
"For a dataset such as AN4, we do not need such a deep model. In fact, the depth of this model will cause much slower convergence on a small dataset, which would require far too long to train on Colab.\n",
"\n",
"In order to speed up training for this demo, we will take only the first five blocks of ContextNet, and discard the rest - and we can do this directly from the config.\n",
"\n",
"**Note**: On any realistic dataset (say Librispeech) this step would hurt the model's accuracy significantly. It is being done only to reduce the time spent waiting for training to finish on Colab."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "6a_vedo0Lyo8"
},
"outputs": [],
"source": [
"from omegaconf import OmegaConf, open_dict\n",
"\n",
"config = OmegaConf.load(\"../../examples/asr/conf/contextnet_rnnt/contextnet_rnnt.yaml\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "N-t7fRl6GS3A"
},
"source": [
"-----\n",
"\n",
"Here, we will slice off the first five blocks from the Jasper block (used to build ContextNet). Setting the config with this subset will create a stride 2x model with just five blocks.\n",
"\n",
"We will also explicitly state that the last block dimension must be obtained from `model.model_defaults.enc_hidden` inside the config. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "B9nY5JQaIhKz"
},
"outputs": [],
"source": [
"config.model.encoder.jasper = config.model.encoder.jasper[:5]\n",
"config.model.encoder.jasper[-1].filters = '${model.model_defaults.enc_hidden}'"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "d0tyOaqNLq-4"
},
"source": [
"-------\n",
"\n",
"Next, set up the data loaders of the config for the ContextNet model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "mJbqMEkjMTfM"
},
"outputs": [],
"source": [
"# print out the train and validation configs to know what needs to be changed\n",
"print(OmegaConf.to_yaml(config.model.train_ds))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fyYY6hU5Meyk"
},
"source": [
"-------\n",
"\n",
"We can note that the config here is nearly identical to the CTC ASR model configs! So let us take the same steps here to update the configs."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "5QNYNItcMeOC"
},
"outputs": [],
"source": [
"config.model.train_ds.manifest_filepath = TRAIN_MANIFEST\n",
"config.model.validation_ds.manifest_filepath = TEST_MANIFEST\n",
"config.model.test_ds.manifest_filepath = TEST_MANIFEST"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "MfW6KQ0gM6QQ"
},
"source": [
"------\n",
"\n",
"Next, we need to setup the tokenizer section of the config"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "CNlRNlVCNAjr"
},
"outputs": [],
"source": [
"print(OmegaConf.to_yaml(config.model.tokenizer))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "MzmCNJZ7NAng"
},
"outputs": [],
"source": [
"config.model.tokenizer.dir = TOKENIZER\n",
"config.model.tokenizer.type = TOKENIZER_TYPE_CFG"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "j1gVDybDq5vN"
},
"source": [
"------\n",
"Now, we can update the optimization and augmentation for this dataset in order to converge to some reasonable score within a short training run."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "cUkqv_bQraQe"
},
"outputs": [],
"source": [
"print(OmegaConf.to_yaml(config.model.optim))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "mEyK1fqEiyxo"
},
"outputs": [],
"source": [
"# Finally, let's remove logging of samples and the warmup since the dataset is small (similar to CTC models)\n",
"config.model.log_prediction = False\n",
"config.model.optim.sched.warmup_steps = None"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "lwrvBFCcZO1q"
},
"source": [
"------\n",
"\n",
"Next, we remove the spec augment that is provided by default for ContextNet. While additional augmentation would surely help training, it would require longer training to see significant benefits."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "i4udFKMwDbRm"
},
"outputs": [],
"source": [
"print(OmegaConf.to_yaml(config.model.spec_augment))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "OLUbRvoDDedd"
},
"outputs": [],
"source": [
"config.model.spec_augment.freq_masks = 0\n",
"config.model.spec_augment.time_masks = 0"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "0plKYG1zNKQK"
},
"source": [
"------\n",
"\n",
"... We are now almost done! Most of the updates to a Transducer config are nearly the same as any CTC model."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "gn8WzknQ6C-t"
},
"source": [
"## Fused Batch during training and evaluation\n",
"\n",
"We discussed in the previous tutorial (Intro-to-Transducers) the significant memory cost of the Transducer Joint calculation during training. We also discussed that NeMo provides a simple yet effective method to nearly sidestep this limitation. We can now dive deeper into understanding what precisely NeMo's Transducer framework will do to alleviate this memory consumption issue.\n",
"\n",
"The following sub-cells are **voluntary** and valuable for understanding the cause, effect, and resolution of memory issues in Transducer models. The content can be skipped if one is familiar with the topic, and it is only required to use the `fused batch step`."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "V5sMoFHmVvhg"
},
"source": [
"## Transducer Memory reduction with Fused Batch step\n",
"\n",
"The following few cells explain why memory is an issue when training Transducer models and how NeMo tackles the issue with its Fused Batch step.\n",
"\n",
"The material can be read for a thorough understanding, otherwise, it can be skipped."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "kdPilgiIOncw"
},
"source": [
"### Diving deeper into the memory costs of Transducer Joint\n",
"-------\n",
"\n",
"One of the significant limitations of Transducers is the exorbitant memory cost of computing the Joint module. The Joint module is comprised of two steps. \n",
"\n",
"1) Projecting the Acoustic and Transcription feature dimensions to some standard hidden dimension (specified by `model.model_defaults.joint_hidden`)\n",
"\n",
"2) Projecting this intermediate hidden dimension to the final vocabulary space to obtain the transcription.\n",
"\n",
"Take the following example.\n",
"\n",
"**BS**=32 ; **T** (after **2x** stride) = 800, **U** (with character encoding) = 400-450 tokens, Vocabulary size **V** = 28 (26 alphabet chars, space and apostrophe). Let the hidden dimension of the Joint model be 640 (Most Google Transducer papers use hidden dimension of 640).\n",
"\n",
"$ Memory \\, (Hidden, \\, gb) = 32 \\times 800 \\times 450 \\times 640 \\times 4 = 29.49 $ gigabytes (4 bytes per float). \n",
"\n",
"$ Memory \\, (Joint, \\, gb) = 32 \\times 800 \\times 450 \\times 28 \\times 4 = 1.290 $ gigabytes (4 bytes per float)\n",
"\n",
"-----\n",
"\n",
"**NOTE**: This is just for the forward pass! We need to double this memory to store gradients! This much memory is also just for the Joint model **alone**. Far more memory is required for the Prediction model as well as the large Acoustic model itself and its gradients!\n",
"\n",
"Even with mixed precision, that's $\\sim 30$ GB of GPU RAM for just 1 part of the network + its gradients.\n",
"\n",
"---------"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZxVlEP9eQim8"
},
"source": [
"### Simple methods to reduce memory consumption\n",
"\n",
"------\n",
"\n",
"The easiest way to reduce memory consumption is to perform more downsampling in the acoustic model and use sub-word tokenization of the text to reduce the length of the target sequence.\n",
"\n",
"**BS**=32 ; **T** (after **8x** stride) = 200, **U** (with sub-word encoding) = 100-180 tokens, Vocabulary size **V** = 1024.\n",
"\n",
"$ Memory \\, (Hidden, \\, gb) = 32 \\times 200 \\times 150 \\times 640 \\times 4 = 2.45 $ gigabytes (4 bytes per float).\n",
"\n",
"$ Memory \\, (Joint, \\, gb) = 32 \\times 200 \\times 150 \\times 1024 \\times 4 = 3.93 $ gigabytes (4 bytes per float)\n",
"\n",
"-----\n",
"\n",
"Using Automatic Mixed Precision, we expend just around 6-7 GB of GPU RAM on the Joint + its gradient.\n",
"\n",
"The above memory cost is much more tractable - but we generally want larger and larger acoustic models. It is consistently the easiest way to improve transcription accuracy. So that means on a limited 32 GB GPU, we have to partition 7 GB just for the Joint and remaining memory allocated between Transcription + Acoustic Models.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "7uPZyTENRwv9"
},
"source": [
"### Fused Transcription-Joint-Loss-WER (also called Batch Splitting)\n",
"----------\n",
"\n",
"The fundamental problem is that the joint tensor grows in size when `[T x U]` grows in size. This growth in memory cost is due to many reasons - either by model construction (downsampling) or the choice of dataset preprocessing (character tokenization vs. sub-word tokenization).\n",
"\n",
"Another dimension that NeMo can control is **batch**. Due to how we batch our samples, small and large samples all get clumped together into a single batch. So even though the individual samples are not all as long as the maximum length of T and U in that batch, when a batch of such samples is constructed, it will consume a significant amount of memory for the sake of compute efficiency.\n",
"\n",
"So as is always the case - **trade-off compute speed for memory savings**.\n",
"\n",
"------\n",
"\n",
"The fused operation goes as follows : \n",
"\n",
"1) Forward the entire acoustic model in a single pass. (Use global batch size here for acoustic model - found in `model.*_ds.batch_size`)\n",
"\n",
"2) Split the Acoustic Model's logits by `fused_batch_size` and loop over these sub-batches.\n",
"\n",
"3) Construct a sub-batch of same `fused_batch_size` for the Prediction model. Now the target sequence length is $U_{sub-batch} < U$. \n",
"\n",
"4) Feed this $U_{sub-batch}$ into the Joint model, along with a sub-batch from the Acoustic model (with $T_{sub-batch} < T$). Remember, we only have to slice off a part of the acoustic model here since we have the full batch of samples $(B, T, D)$ from the acoustic model.\n",
"\n",
"5) Performing steps (3) and (4) yields $T_{sub-batch}$ and $U_{sub-batch}$. Perform sub-batch joint step - costing an intermediate $(B, T_{sub-batch}, U_{sub-batch}, V)$ in memory.\n",
"\n",
"6) Compute loss on sub-batch and preserve in a list to be later concatenated. \n",
"\n",
"7) Compute sub-batch metrics (such as Character / Word Error Rate) using the above Joint tensor and sub-batch of ground truth labels. Preserve the scores to be averaged across the entire batch later.\n",
"\n",
"8) Delete the sub-batch joint matrix $(B, T_{sub-batch}, U_{sub-batch}, V)$. Only gradients from .backward() are preserved now in the computation graph.\n",
"\n",
"9) Repeat steps (3) - (8) until all sub-batches are consumed.\n",
"\n",
"10) Cleanup step. Compute full batch WER and log. Concatenate loss list and pass to PTL to compute the equivalent of the original (full batch) Joint step. Delete ancillary objects necessary for sub-batching. \n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "0T3vHdkeWo5S"
},
"source": [
"## Setting up Fused Batch step in a Transducer Config\n",
"\n",
"After all that discussion above, let us look at how to enable that entire pipeline in NeMo.\n",
"\n",
"As we can note below, it takes precisely two changes in the config to enable the fused batch step:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Unv8-GvOWhad"
},
"outputs": [],
"source": [
"print(OmegaConf.to_yaml(config.model.joint))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "VsunP99saF5c"
},
"outputs": [],
"source": [
"# Two lines to enable the fused batch step\n",
"config.model.joint.fuse_loss_wer = True\n",
"config.model.joint.fused_batch_size = 16 # this can be any value (preferably less than model.*_ds.batch_size)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "yT1vJH9OkS0u"
},
"outputs": [],
"source": [
"# We will also reduce the hidden dimension of the joint and the prediction networks to preserve some memory\n",
"config.model.model_defaults.pred_hidden = 64\n",
"config.model.model_defaults.joint_hidden = 64"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "IPb1gS3OZprs"
},
"source": [
"--------\n",
"\n",
"Finally, since the dataset is tiny, we do not need an enormous model (the default is roughly 40 M parameters!)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "MywZQ9ADZpDW"
},
"outputs": [],
"source": [
"# Use just 128 filters across the model to speed up training and reduce parameter count\n",
"config.model.model_defaults.filters = 128"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "zUgThKbxatyg"
},
"source": [
"## Initialize a Transducer ASR Model\n",
"\n",
"Finally, let us create a Transducer model, which is as easy as changing a line of import if you already have a script to create CTC models. We will use a small model since the dataset is just 5 hours of speech."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "SH4ZfXHOdGhX"
},
"source": [
"------\n",
"\n",
"Setup a Pytorch Lightning Trainer:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Fmf0iSY-a6LC"
},
"outputs": [],
"source": [
"import torch\n",
"from pytorch_lightning import Trainer\n",
"\n",
"if torch.cuda.is_available():\n",
" accelerator = 'gpu'\n",
"else:\n",
" accelerator = 'gpu'\n",
"\n",
"EPOCHS = 50\n",
"\n",
"# Initialize a Trainer for the Transducer model\n",
"trainer = Trainer(devices=1, accelerator=accelerator, max_epochs=EPOCHS,\n",
" enable_checkpointing=False, logger=False,\n",
" log_every_n_steps=5, check_val_every_n_epoch=10)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "jqVt4TEncEqv"
},
"outputs": [],
"source": [
"# Import the Transducer Model\n",
"import nemo.collections.asr as nemo_asr"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "RheLsmA1cRz0"
},
"outputs": [],
"source": [
"# Build the model\n",
"model = nemo_asr.models.EncDecRNNTBPEModel(cfg=config.model, trainer=trainer)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "9eqYnTwqnRtI"
},
"outputs": [],
"source": [
"model.summarize();"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "wZC2JM_8cqzR"
},
"source": [
"------\n",
"\n",
"We now have a Transducer model ready to be trained!"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "1NkfrA2l6DBF"
},
"source": [
"## (Optional) Partially loading pre-trained weights from another model\n",
"\n",
"An interesting point to note about Transducer models - the Acoustic model config (and therefore the Acoustic model itself) can be shared between CTC and Transducer models.\n",
"\n",
"This means that we can initialize the weights of a Transducer's Acoustic model with weights from a pre-trained CTC encoder model.\n",
"\n",
"------\n",
"\n",
"**Note**: This step is optional and not necessary at all to train a Transducer model. Below, we show the steps that we would take if we wanted to do this, however as the loaded model has different kernel sizes compared to the current model, the checkpoint cannot be loaded."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "OAjMrbK-dtIv"
},
"outputs": [],
"source": [
"# Load a small CTC model\n",
"# ctc_model = nemo_asr.models.EncDecCTCModelBPE.from_pretrained(\"stt_en_citrinet_256\", map_location='cpu')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "urK_ZtVKeEpR"
},
"source": [
"------\n",
"\n",
"Then load the state dict of the CTC model's encoder into the Transducer model's encoder."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Ugz8Y8eieLMK"
},
"outputs": [],
"source": [
"# <<< NOTE: This is only for demonstration ! >>>\n",
"# Below cell will fail because the two model's have incompatible kernel sizes in their Conv layers.\n",
"\n",
"# <<< NOTE: Below cell is only shown to illustrate the method >>>\n",
"# model.encoder.load_state_dict(ctc_model.encoder.state_dict(), strict=True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "0VV1HNVD6DDc"
},
"source": [
"# Training on AN4\n",
"\n",
"Now that the model is ready, we can finally train it!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "OS_U6uO-fnW9"
},
"outputs": [],
"source": [
"# Prepare NeMo's Experiment manager to handle checkpoint saving and logging for us\n",
"from nemo.utils import exp_manager\n",
"\n",
"# Environment variable generally used for multi-node multi-gpu training.\n",
"# In notebook environments, this flag is unnecessary and can cause logs of multiple training runs to overwrite each other.\n",
"os.environ.pop('NEMO_EXPM_VERSION', None)\n",
"\n",
"exp_config = exp_manager.ExpManagerConfig(\n",
" exp_dir=f'experiments/',\n",
" name=f\"Transducer-Model\",\n",
" checkpoint_callback_params=exp_manager.CallbackParams(\n",
" monitor=\"val_wer\",\n",
" mode=\"min\",\n",
" always_save_nemo=True,\n",
" save_best_model=True,\n",
" ),\n",
")\n",
"\n",
"exp_config = OmegaConf.structured(exp_config)\n",
"\n",
"logdir = exp_manager.exp_manager(trainer, exp_config)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "SDleCL0Zf7lU"
},
"outputs": [],
"source": [
"try:\n",
" from google import colab\n",
" COLAB_ENV = True\n",
"except (ImportError, ModuleNotFoundError):\n",
" COLAB_ENV = False\n",
"\n",
"# Load the TensorBoard notebook extension\n",
"if COLAB_ENV:\n",
" %load_ext tensorboard\n",
" %tensorboard --logdir /content/experiments/Transducer-Model/\n",
"else:\n",
" print(\"To use TensorBoard, please use this notebook in a Google Colab environment.\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "hzqAsK23uYHG"
},
"outputs": [],
"source": [
"# Release resources prior to training\n",
"import gc\n",
"gc.collect()\n",
"\n",
"if accelerator == 'gpu':\n",
" torch.cuda.empty_cache()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"background_save": true
},
"id": "A4neHTnSgaDb"
},
"outputs": [],
"source": [
"# Train the model\n",
"trainer.fit(model)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "k0MgsBt_NyyT"
},
"source": [
"-------\n",
"\n",
"Lets check what the final performance on the test set."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"background_save": true
},
"id": "iEjuXo4BNyOi"
},
"outputs": [],
"source": [
"trainer.test(model)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "aY6S2SdeN9Be"
},
"source": [
"------\n",
"\n",
"The model should obtain some score between 10-12% WER after 50 epochs of training. Quite a good score for just 50 epochs of training a tiny model! Note that these are greedy scores, yet they are pretty strong for such a short training run.\n",
"\n",
"We can further improve these scores by using the internal Prediction network to calculate beam scores."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eQUK6b266DF0"
},
"source": [
"# Changing the Decoding Strategy\n",
"\n",
"During training, for the sake of efficiency, we were using the `greedy_batch` decoding strategy. However, we might want to perform inference with another method - say, beam search.\n",
"\n",
"NeMo allows changing the decoding strategy easily after the model has been trained."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"background_save": true
},
"id": "RJtrJKt0gY0i"
},
"outputs": [],
"source": [
"import copy\n",
"\n",
"decoding_config = copy.deepcopy(config.model.decoding)\n",
"print(OmegaConf.to_yaml(decoding_config))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"background_save": true
},
"id": "MNL5L1KthC1E"
},
"outputs": [],
"source": [
"# Update the config for the decoding strategy\n",
"decoding_config.strategy = \"alsd\" # Options are `greedy`, `greedy_batch`, `beam`, `tsd` and `alsd`\n",
"decoding_config.beam.beam_size = 4 # Increase beam size for better scores, but it will take much longer for transcription !"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"background_save": true
},
"id": "xQgQRDnlhC7M"
},
"outputs": [],
"source": [
"# Finally update the model's decoding strategy !\n",
"model.change_decoding_strategy(decoding_config)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "h7jrCMJvh8vE"
},
"outputs": [],
"source": [
"trainer.test(model)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "rPRFIeHsO8l7"
},
"source": [
"------\n",
"\n",
"Here, we improved our scores significantly by using the `Alignment-Length Synchronous Decoding` beam search. Feel free to try the other algorithms and compare the speed-accuracy tradeoff!"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "dpUoqG_G6DII"
},
"source": [
"# (Extra) Extracting Transducer Model Alignments \n",
"\n",
"Transducers are unique in the sense that for each timestep $t \\le T$, they can emit multiple target tokens $u_t$. During training, this is represented as the $T \\times U$ joint that maps to the vocabulary $V$. \n",
"\n",
"During inference, there is no need to compute the full joint $T \\times U$. Instead, after the model predicts the `Transducer Blank` token at the current timestep $t$ while predicting the target token $u_t$, the model will move onto the next acoustic timestep $t + 1$. As such, we can obtain the diagonal alignment of the Transducer model per sample relatively simply.\n",
"\n",
"------\n",
"\n",
"**Note**: While alignments can be calculated for both greedy and beam search - it is non-trivial to incorporate this alignment information for beam decoding. Therefore NeMo only supports extracting alignments during greedy decoding."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "jjoWXknzP7En"
},
"source": [
"-----\n",
"\n",
"Restore model to greedy decoding for alignment calculation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"background_save": true
},
"id": "lgpsXSEeQAp4"
},
"outputs": [],
"source": [
"decoding_config.strategy = \"greedy_batch\"\n",
"\n",
"# Special flag which is generally disabled\n",
"# Instruct Greedy Decoders to preserve alignment information during autoregressive decoding\n",
"with open_dict(decoding_config):\n",
" decoding_config.preserve_alignments = True\n",
" decoding_config.fused_batch_size = -1 # temporarily stop fused batch during inference.\n",
"\n",
"model.change_decoding_strategy(decoding_config)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "yUD44kBtdftZ"
},
"source": [
"-------\n",
"\n",
"Set up a test data loader that we will use to obtain the alignments for a single batch. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"background_save": true
},
"id": "vrhldu5WPkvg"
},
"outputs": [],
"source": [
"test_dl = model.test_dataloader()\n",
"test_dl = iter(test_dl)\n",
"batch = next(test_dl)\n",
"\n",
"device = torch.device('cuda' if accelerator == 'gpu' else 'cpu')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"background_save": true
},
"id": "fAagUT_DPQhF"
},
"outputs": [],
"source": [
"def rnnt_alignments(model, batch):\n",
" model = model.to(device)\n",
" encoded, encoded_len = model.forward(\n",
" input_signal=batch[0].to(device), input_signal_length=batch[1].to(device)\n",
" )\n",
" \n",
" current_hypotheses = model.decoding.rnnt_decoder_predictions_tensor(\n",
" encoded, encoded_len, return_hypotheses=True\n",
" )\n",
" \n",
" del encoded, encoded_len\n",
" \n",
" # current hypothesis is a tuple of \n",
" # 1) best hypothesis \n",
" # 2) Sorted list of hypothesis (if using beam search); None otherwise\n",
" return current_hypotheses"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"background_save": true
},
"id": "OuSrv8lZPhwY"
},
"outputs": [],
"source": [
"# Get a batch of hypotheses, as well as a batch of all obtained hypotheses (if beam search is used)\n",
"hypotheses, all_hypotheses = rnnt_alignments(model, batch)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "P4LknY78d3ZZ"
},
"source": [
"------\n",
"\n",
"Select a sample ID from within the batch to observe the alignment information contained in the Hypothesis."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"background_save": true
},
"id": "arE7af_DPhyy"
},
"outputs": [],
"source": [
"# Select the sample ID from within the batch\n",
"SAMPLE_ID = 0"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "S6YcE27WPh1G"
},
"outputs": [],
"source": [
"# Obtain the hypothesis for this sample, as well as some ground truth information about this sample\n",
"hypothesis = hypotheses[SAMPLE_ID]\n",
"original_sample_len = batch[1][SAMPLE_ID]\n",
"ground_truth = batch[2][SAMPLE_ID]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "oEg_73h9Qe8t"
},
"outputs": [],
"source": [
"# The Hypothesis object contains a lot of useful information regarding the decoding step.\n",
"print(hypothesis)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "VlZRFF-kQU2d"
},
"source": [
"-------\n",
"\n",
"Now, decode the hypothesis and compare it against the ground truth text. Note - this decoded hypothesis is at *sub-word* level for this model. Therefore sub-word tokens such as `_` may be seen here."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ALuefA4XPh5O"
},
"outputs": [],
"source": [
"decoded_text = hypothesis.text\n",
"decoded_hypothesis = model.decoding.decode_ids_to_tokens(hypothesis.y_sequence.cpu().numpy().tolist())\n",
"decoded_ground_truth = model.decoding.tokenizer.ids_to_text(ground_truth.cpu().numpy().tolist())\n",
"\n",
"print(\"Decoded ground truth :\", decoded_ground_truth)\n",
"print(\"Decoded hypothesis :\", decoded_text)\n",
"print(\"Decoded hyp tokens :\", decoded_hypothesis)\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "J1djRcGrSeAQ"
},
"source": [
"---------\n",
"\n",
"Next we print out the 2-d alignment grid of the RNNT model:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "vl1BF52iSjEq"
},
"outputs": [],
"source": [
"alignments = hypothesis.alignments\n",
"\n",
"# These two values should normally always match\n",
"print(\"Length of alignments (T): \", len(alignments))\n",
"print(\"Length of padded acoustic model after striding : \", int(hypothesis.length))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "xkv_x8NAfpX3"
},
"source": [
"------\n",
"\n",
"Finally, let us calculate the alignment grid. We will de-tokenize the sub-word token if it is a valid index in the vocabulary and use `''` as a placeholder for the `Transducer Blank` token.\n",
"\n",
"Note that each `timestep` here is (roughly) $timestep * total\\_stride\\_of\\_model * preprocessor.window\\_stride$ seconds timestamp. \n",
"\n",
"**Note**: You can modify the value of `config.model.loss.warprnnt_numba_kwargs.fastemit_lambda` prior to training and see an impact on final alignment latency!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Xt5nDL55SdRL"
},
"outputs": [],
"source": [
"# Compute the alignment grid\n",
"for ti in range(len(alignments)):\n",
" t_u = []\n",
" for uj in range(len(alignments[ti])):\n",
" logprob, token = alignments[ti][uj]\n",
" token = token.to('cpu').numpy().tolist()\n",
" decoded_token = model.decoding.decode_ids_to_tokens([token])[0] if token != model.decoding.blank_id else '' # token at index len(vocab) == RNNT blank token\n",
" t_u.append(decoded_token)\n",
" \n",
" print(f\"Tokens at timestep {ti} = {t_u}\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ScgUTa-16DKu"
},
"source": [
"# Takeaways\n",
"------\n",
"\n",
"We covered significant ground in this tutorial, but here are a few key takeaways -\n",
"\n",
"1) **Any CTC config can be easily converted to a Transducer config** by copy-pasting the default Transducer config components.\n",
"\n",
"-------\n",
"\n",
"2) **Dataset processing for CTC and Transducer models are the same!** If it works for CTC it works exactly the same way for Transducers. This also applies to Character-based models vs. Sub-word tokenization-based models.\n",
"\n",
"-------\n",
"\n",
"3) **Fused Batch during training and evaluation significantly reduces the need for large GPU memory**, and we can simply reduce the `fused_batch_size` to process samples at a larger acoustic (global) batch size (the maximum batch size that can be passed through the acoustic model, disregarding the Prediction and Joint models).\n",
"\n",
"-------\n",
"\n",
"4) Once trained, **transducer models implicitly can be used for beam search**! The prediction network acts as an implicit language model and can easily be used for this beam search by switching the decoding configuration.\n",
"\n",
"-------\n",
"\n",
"5) **Alignments can be easily extracted from Transducers** by adding a special flag to the Decoding setup. After this, it is quite simple to extract the 2-d alignment grid of the transducer for samples or a batch of samples. It must be noted that this alignment information does require slightly more memory, and increases decoding time by a small amount as well.\n",
"\n",
"-------\n",
"\n",
"This is just the start of our journey into Transducers. There are several improvements coming out every few months for these models, and we encourage contributions to improve the transducer framework in NeMo!"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "gFvHVBIi4pRr"
},
"source": [
"# Next Steps\n",
"\n",
"Head on over to the `examples/asr` directory in the NeMo repository in order to find the training scripts for Transducer based models - `sppech_to_text_rnnt.py` (for Character decoding based Transducer models) and `speech_to_text_rnnt_bpe.py` (for Sub-word decoding based Transducer models).\n",
"\n",
"You will find that following many of the steps from CTC models, and simply modifying the config to include the Transducer components, we can train character or sub-word based transducer models with the same flexibility as we can train CTC models !"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [
"V5sMoFHmVvhg"
],
"name": "ASR-with-Transducers.ipynb",
"provenance": [],
"toc_visible": true
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|