File size: 12,603 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
{
    "cells": [
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "_wIWPxBVc3_O"
            },
            "source": [
                "# Getting Started: Voice swap application\n",
                "This notebook shows how to use NVIDIA NeMo (https://github.com/NVIDIA/NeMo) to construct a toy demo which will swap a voice in the audio fragment with a computer generated one.\n",
                "\n",
                "At its core the demo does: \n",
                "\n",
                "* Automatic speech recognition of what is said in the file. E.g. converting audio to text\n",
                "* Adding punctuation and capitalization to the text\n",
                "* Generating spectrogram from resulting text\n",
                "* Generating waveform audio from the spectrogram."
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "gzcsqceVdtj3"
            },
            "source": [
                "## Installation\n",
                "NeMo can be installed via simple pip command."
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "I9eIxAyKHREB"
            },
            "outputs": [],
            "source": [
                "BRANCH = 'r1.17.0'\n",
                "!python -m pip install git+https://github.com/NVIDIA/NeMo.git@$BRANCH#egg=nemo_toolkit[all]\n"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "-X2OyAxreGfl"
            },
            "outputs": [],
            "source": [
                "# Ignore pre-production warnings\n",
                "import warnings\n",
                "warnings.filterwarnings('ignore')\n",
                "import nemo\n",
                "# Import Speech Recognition collection\n",
                "import nemo.collections.asr as nemo_asr\n",
                "# Import Natural Language Processing collection\n",
                "import nemo.collections.nlp as nemo_nlp\n",
                "# Import Speech Synthesis collection\n",
                "import nemo.collections.tts as nemo_tts\n",
                "# We'll use this to listen to audio\n",
                "import IPython"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "1vC2DHawIGt8"
            },
            "outputs": [],
            "source": [
                "# Download audio sample which we'll try\n",
                "# This is a sample from LibriSpeech Dev Clean dataset - the model hasn't seen it before\n",
                "Audio_sample = '2086-149220-0033.wav'\n",
                "!wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav\n",
                "# Listen to it\n",
                "IPython.display.Audio(Audio_sample)"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "zodyzdyTVXas"
            },
            "source": [
                "## Instantiate pre-trained NeMo models which we'll use\n",
                "``from_pretrained(...)`` API downloads and initialized model directly from the cloud.\n",
                "\n",
                "We will load audio_sample and convert it to text with QuartzNet ASR model (an action called transcribe).\n",
                "To convert text back to audio, we actually need to generate spectrogram with FastPitch first and then convert it to actual audio signal using the HiFiGAN vocoder."
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "f_J9cuU1H6Bn"
            },
            "outputs": [],
            "source": [
                "# Speech Recognition model - QuartzNet\n",
                "quartznet = nemo_asr.models.EncDecCTCModel.from_pretrained(model_name=\"stt_en_quartznet15x5\").cuda()\n",
                "\n",
                "# Punctuation and capitalization model\n",
                "punctuation = nemo_nlp.models.PunctuationCapitalizationModel.from_pretrained(model_name='punctuation_en_distilbert').cuda()\n",
                "\n",
                "# Spectrogram generator which takes text as an input and produces spectrogram\n",
                "spectrogram_generator = nemo_tts.models.FastPitchModel.from_pretrained(model_name=\"tts_en_fastpitch\").cuda()\n",
                "\n",
                "# Vocoder model which takes spectrogram and produces actual audio\n",
                "vocoder = nemo_tts.models.HifiGanModel.from_pretrained(model_name=\"tts_en_hifigan\").cuda()"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "jQSj-IhEhrtI"
            },
            "source": [
                "## Using the models"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "s0ERrXIzKpwu"
            },
            "outputs": [],
            "source": [
                "# Convert our audio sample to text\n",
                "files = [Audio_sample]\n",
                "raw_text = ''\n",
                "text = ''\n",
                "for fname, transcription in zip(files, quartznet.transcribe(paths2audio_files=files)):\n",
                "  raw_text = transcription\n",
                "\n",
                "# Add capitalization and punctuation\n",
                "res = punctuation.add_punctuation_capitalization(queries=[raw_text])\n",
                "text = res[0]\n",
                "print(f'\\nRaw recognized text: {raw_text}. \\nText with capitalization and punctuation: {text}')"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "-0Sk0C9-LmAR"
            },
            "outputs": [],
            "source": [
                "# A helper function which combines TTS models to go directly from \n",
                "# text to audio\n",
                "def text_to_audio(text):\n",
                "  parsed = spectrogram_generator.parse(text)\n",
                "  spectrogram = spectrogram_generator.generate_spectrogram(tokens=parsed)\n",
                "  audio = vocoder.convert_spectrogram_to_audio(spec=spectrogram)\n",
                "  return audio.to('cpu').detach().numpy()"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "Q8Jvwe4Ahncx"
            },
            "source": [
                "## Results"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "-im5TDF-MP2N"
            },
            "outputs": [],
            "source": [
                "# This is our original audio sample\n",
                "IPython.display.Audio(Audio_sample)"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "SNOMquwviEEQ"
            },
            "outputs": [],
            "source": [
                "# This is what was recognized by the ASR model\n",
                "print(raw_text)"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "6qRpDPfNiLOU"
            },
            "outputs": [],
            "source": [
                "# This is how punctuation model changed it\n",
                "print(text)"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "di2IzMsdiiWq"
            },
            "source": [
                "Compare how the synthesized audio sounds when using text with and without punctuation."
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "EIh8wTVs5uH7"
            },
            "outputs": [],
            "source": [
                "# Without punctuation\n",
                "IPython.display.Audio(text_to_audio(raw_text), rate=22050)"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {
                "colab": {},
                "colab_type": "code",
                "id": "_qgKa9L954bJ"
            },
            "outputs": [],
            "source": [
                "# Final result - with punctuation\n",
                "IPython.display.Audio(text_to_audio(text), rate=22050)"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "JOEFYywbctbJ"
            },
            "source": [
                "## Next steps\n",
                "A demo like this is great for prototyping and experimentation. However, for real production deployment, you would want to use a service like [NVIDIA Riva](https://developer.nvidia.com/riva).\n",
                "\n",
                "**NeMo is built for training.** You can fine-tune, or train from scratch on your data all models used in this example. We recommend you checkout the following, more in-depth, tutorials next:\n",
                "\n",
                "* [NeMo fundamentals](https://colab.research.google.com/github/NVIDIA/NeMo/blob/stable/tutorials/00_NeMo_Primer.ipynb)\n",
                "* [NeMo models](https://colab.research.google.com/github/NVIDIA/NeMo/blob/stable/tutorials/01_NeMo_Models.ipynb)\n",
                "* [Speech Recognition](https://colab.research.google.com/github/NVIDIA/NeMo/blob/stable/tutorials/asr/ASR_with_NeMo.ipynb)\n",
                "* [Punctuation and Capitalization](https://colab.research.google.com/github/NVIDIA/NeMo/blob/stable/tutorials/nlp/Punctuation_and_Capitalization.ipynb)\n",
                "* [Speech Synthesis](https://colab.research.google.com/github/NVIDIA/NeMo/blob/stable/tutorials/tts/Inference_ModelSelect.ipynb)\n",
                "\n",
                "\n",
                "You can find scripts for training and fine-tuning ASR, NLP and TTS models [here](https://github.com/NVIDIA/NeMo/tree/main/examples). "
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {
                "colab_type": "text",
                "id": "ahRh2Y0Lc0G1"
            },
            "source": [
                "That's it folks! Head over to NeMo GitHub for more examples: https://github.com/NVIDIA/NeMo"
            ]
        }
    ],
    "metadata": {
        "accelerator": "GPU",
        "colab": {
            "collapsed_sections": [],
            "name": "NeMo voice swap app",
            "provenance": [],
            "toc_visible": true
        },
        "kernelspec": {
            "display_name": "Python 3 (ipykernel)",
            "language": "python",
            "name": "python3"
        },
        "language_info": {
            "codemirror_mode": {
                "name": "ipython",
                "version": 3
            },
            "file_extension": ".py",
            "mimetype": "text/x-python",
            "name": "python",
            "nbconvert_exporter": "python",
            "pygments_lexer": "ipython3",
            "version": "3.8.12"
        }
    },
    "nbformat": 4,
    "nbformat_minor": 4
}