File size: 25,992 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "Publish_NeMo_Model_On_Hugging_Face_Hub.ipynb",
"provenance": [],
"collapsed_sections": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "qjQ5KQIkaK2J"
},
"outputs": [],
"source": [
"\"\"\"\n",
"You can run either this notebook locally (if you have all the dependencies and a GPU) or on Google Colab.\n",
"\n",
"Instructions for setting up Colab are as follows:\n",
"1. Open a new Python 3 notebook.\n",
"2. Import this notebook from GitHub (File -> Upload Notebook -> \"GITHUB\" tab -> copy/paste GitHub URL)\n",
"3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator)\n",
"4. Run this cell to set up dependencies.\n",
"\"\"\"\n",
"# If you're using Google Colab and not running locally, run this cell.\n",
"\n",
"## Install dependencies\n",
"!apt-get install sox libsndfile1 ffmpeg\n",
"!pip install wget\n",
"!pip install text-unidecode\n",
"\n",
"### Install NeMo\n",
"BRANCH = 'r1.17.0'\n",
"!python -m pip install git+https://github.com/NVIDIA/NeMo.git@$BRANCH#egg=nemo_toolkit[all]"
]
},
{
"cell_type": "code",
"source": [
"### Install Hugging Face Hub\n",
"!python -m pip install huggingface_hub\n",
"!python -m pip install evaluate"
],
"metadata": {
"id": "J6d04-VRjC-O"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"# NeMo models on Hugging Face Hub\n",
"\n",
"This guide will briefly show how to upload NeMo models to Hugging Face programmatically.\n",
"\n",
"This enables community members to share their NeMo models (any model!) with all users of NeMo!\n",
"\n",
"**Note**: While in this tutorial we showcase an ASR model, there is no particular restriction to any domain - all NeMo models (.nemo files) of every domain can be uploaded and shared in the same way."
],
"metadata": {
"id": "aS-Y5O_oGBTc"
}
},
{
"cell_type": "markdown",
"source": [
"# Login to Hugging Face\n",
"\n",
"Use the notebook login, and access your user access token (or create one to upload models to Hugging Face).\n",
"\n",
"For more information, visit the User Access Token section - https://huggingface.co/docs/hub/security-tokens"
],
"metadata": {
"id": "Us3UlvwCiEZi"
}
},
{
"cell_type": "code",
"source": [
"from huggingface_hub import notebook_login\n",
"\n",
"notebook_login()"
],
"metadata": {
"id": "4RTYbCLziEnb"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"!git config --global credential.helper store"
],
"metadata": {
"id": "dgZbTPcFiaml"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"# Prepare a model to upload to HF\n",
"\n",
"In this example, we will download a NeMo ASR model from NGC and then upload it to Hugging Face for simplicity and to showcase the method.\n",
"\n",
"**You can swap out this ASR model for any model that you restore via `restore_from()` and follow the same steps to upload your own models !**"
],
"metadata": {
"id": "s-FiNn1eiFAl"
}
},
{
"cell_type": "code",
"source": [
"import torch\n",
"import torch.nn as nn\n",
"\n",
"from omegaconf import DictConfig, OmegaConf, open_dict"
],
"metadata": {
"id": "5KnVl-M0ax14"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"import nemo.collections.asr as nemo_asr # use any domain's models !\n",
"import nemo.collections.nlp as nemo_nlp # use any domain's models !\n",
"import nemo.collections.tts as nemo_tts # use any domain's models !"
],
"metadata": {
"id": "ZEDpkIinbwmm"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"# Model Name\n",
"\n",
"NeMo adheres to strict requirements when naming a model for upload to NGC / Hugging Face Hub. \n",
"\n",
"It is **mandatory** to share the model name across the model card, the NeMo file itself. Otherwise NeMo model from Hugging Face will fail to restore correctly."
],
"metadata": {
"id": "mLuQo1vnHVcP"
}
},
{
"cell_type": "markdown",
"source": [
"## Naming Convention\n",
"\n",
"NeMo model names can vary based on domain and purpose. While we attempt to conform to standard guidelines when naming our models, we do not expect the same level of strictness for community contributions.\n",
"\n",
"Here are some common guidelines we encourage (but do not enforce) users to follow : \n",
"\n",
"- `Task name`: Usually a short 2-3 character representation of the task that the model performs.\n",
" - `stt` = Speech To Text (ASR)\n",
" - `tts` = Text to Speech (TTS)\n",
" - `ssl` = (Speech) Self Supervised Learning (SSL)\n",
" - `nlp` = Natural Language Processing (NLP)\n",
" - `nmt` = Neural Machine Translation (NMT) and many more.\n",
"\n",
"- `Language ID`: Usually a 2/3 digit universal language id. For multilingual models, each domain has its own rules, but some common ones are `{lang_1}{lang_2}{...}` or call them `multilingual.`\n",
"\n",
"- `Model Identifier`: Since models vary so drastically across domains, there is a lot of flexibility here. We try to adhere to naming conventions in literature as much as possible. For example, you can attach `model architecture` (Conformer/Citrinet), `training loss` (CTC/Transducer), and `model size` (small, large, discrete integer sizes, etc.).\n",
"\n",
"- `Optional: Additional Modifiers`: These are additional identifiers such as gender of speaker (TTS), dataset name (ls for Librispeech), etc. It can be set on a case-by-case basis.\n",
"\n",
"All these name segments are jointed by `_`.\n",
"\n",
"-----\n",
"\n",
"As an example of the following model we will try today : \n",
"\n",
"`{task name}_{language id}_{model identifier}_[OPTIONAL modifiers]` = `stt_en_conformer_ctc_small`"
],
"metadata": {
"id": "MRO2f9fhHywJ"
}
},
{
"cell_type": "markdown",
"source": [
"**Set the MODEL_NAME carefully** !"
],
"metadata": {
"id": "BjLstKWnPzWV"
}
},
{
"cell_type": "code",
"source": [
"MODEL_NAME = \"stt_en_conformer_ctc_small\""
],
"metadata": {
"id": "UzHjXDbckU0M"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"-----\n",
"**Restore a NeMo Model**\n",
"\n",
"Here, we restore a model from NGC directly, but you can restore a model from your training runs using `restore_from()` or use a local .nemo file."
],
"metadata": {
"id": "qibj1RwvKjSQ"
}
},
{
"cell_type": "code",
"source": [
"model = nemo_asr.models.ASRModel.from_pretrained(MODEL_NAME)"
],
"metadata": {
"id": "MsC3pE65d_z2"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"# Create a Hugging Face Model\n",
"\n",
"Now that we have a NeMo model and have logged into Hugging Face with our user API key, we can begin by creating a new repository and uploading our model."
],
"metadata": {
"id": "y1AkXPFVKfC2"
}
},
{
"cell_type": "markdown",
"source": [
"-----\n",
"\n",
"After the model has been restored, create an HfApi object to interact with the model repository."
],
"metadata": {
"id": "iv17qFG7KzlL"
}
},
{
"cell_type": "code",
"source": [
"from huggingface_hub import HfApi\n",
"api = HfApi()\n",
"username = api.whoami()['name']"
],
"metadata": {
"id": "aJUXCOTjKy-2"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"try:\n",
" api.create_repo(repo_id=MODEL_NAME)\n",
" print(\"Successfully created repository !\")\n",
"except Exception as e:\n",
" print(\"Repository is possibly already created. Refer to error here - \\n\\n\", e)"
],
"metadata": {
"id": "DKRlMeaEkeAH"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"from huggingface_hub import Repository"
],
"metadata": {
"id": "N2-deSyTlCdS"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Note two essential names - \n",
"\n",
"- `hf_model_name`: A string name that is the composite of your `username` and `MODEL_NAME` as set above. This name is used for multiple purposes, so keep track of it.\n",
"\n",
"- `model_filename`: The actual filename of the NeMo model that will be uploaded to Hugging Face. Note that this filename is explicitly set to `{MODEL_NAME}.nemo`. If this model filename is altered, then the model cannot correctly be restored by NeMo when downloaded from Hugging Face Hub, so please be careful."
],
"metadata": {
"id": "aTa4RqDYLGMI"
}
},
{
"cell_type": "code",
"source": [
"local_dir = f'model-{MODEL_NAME}/'\n",
"hf_model_name = f'{username}/{MODEL_NAME}'\n",
"\n",
"commit_message = \"Upload model\"\n",
"model_filename = f'{MODEL_NAME}.nemo'\n",
"\n",
"with Repository(local_dir=local_dir, clone_from=hf_model_name, repo_type='model').commit(commit_message):\n",
" model.save_to(model_filename)"
],
"metadata": {
"id": "xhTTMNpBskMS"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"print(\"Finished uploading model to :\", hf_model_name)"
],
"metadata": {
"id": "BhvNp8MYvxLi"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Test if the model works \n",
"\n",
"Now that we uploaded the model, let's try to use it in NeMo !\n",
"\n",
"The only change required between normally calling `from_pretrained(model_name)` is to call **`from_pretrained({username}/{filename})`**"
],
"metadata": {
"id": "Qrs-MlW9vVbH"
}
},
{
"cell_type": "code",
"source": [
"hf_model_name = f'{username}/{MODEL_NAME}'\n",
"hf_model = nemo_asr.models.ASRModel.from_pretrained(hf_model_name)"
],
"metadata": {
"id": "NyuyyRv5snkr"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"print(\"Successfully used HF model -\", hf_model_name)"
],
"metadata": {
"id": "Yhi922WVv4G_"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"# Model Card\n",
"\n",
"Now that we have uploaded the model, we are nearly 50% done!\n",
"\n",
"The next step is to update the model card to have some helpful information regarding the uploaded model and its scores compared to other models.\n",
"\n",
"You can do this in two ways, manually (by clicking the link below) or programmatically fill in part of the model card by following the instructions below."
],
"metadata": {
"id": "9gG1ElJywEJT"
}
},
{
"cell_type": "code",
"source": [
"hf_url = f'https://huggingface.co/{username}/{MODEL_NAME}'\n",
"print(f\"Visit {hf_url} to manually edit your model card\")"
],
"metadata": {
"id": "aZJRKoxhwBLr"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"-----\n",
"\n",
"Here, we are going to setup some variables for our model card.\n",
"\n",
"First up are the tags:"
],
"metadata": {
"id": "ZlA4hNq6w4rH"
}
},
{
"cell_type": "code",
"source": [
"TAGS = [\n",
" \"automatic-speech-recognition\", # Task id, refer to https://github.com/huggingface/datasets/blob/master/src/datasets/utils/resources/tasks.json for allowed values.\n",
" \"speech\", # add as many other tags as required\n",
" \"audio\",\n",
" \"CTC\",\n",
" \"Conformer\",\n",
" \"Transformer\",\n",
" \"NeMo\", # required for library identification\n",
" \"pytorch\", # required, for toolkit identification\n",
" # \"hf-asr-leaderboard\", # Should only be used if model is evaluated on benchmark scores for ASR.\n",
"]"
],
"metadata": {
"id": "QxKtPynWyUWX"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"-----\n",
"\n",
"Next, we list down all the datasets that were used to train the model.\n",
"\n",
"By convention, try to search if the dataset already exists on Hugging Face Datasets - it is usually listed at the top and in lower case.\n",
"\n",
"If you train on datasets that don't yet exist in Hugging Face Datasets, you can still add them but try to differentiate them by using capitalized names."
],
"metadata": {
"id": "Fh7rYWEMM0Vz"
}
},
{
"cell_type": "code",
"source": [
"# Replace all spaces with `-`\n",
"DATASETS = [\n",
" \"librispeech_asr\",\n",
" \"mozilla-foundation/common_voice_7_0\",\n",
" \"vctk\",\n",
" \"fisher_corpus\",\n",
" \"Switchboard-1\",\n",
" \"WSJ-0\",\n",
" \"WSJ-1\",\n",
" \"National-Singapore-Corpus-Part-1\",\n",
" \"National-Singapore-Corpus-Part-6\",\n",
" \"VoxPopuli-(EN)\",\n",
" \"Europarl-ASR-(EN)\",\n",
" \"Multilingual-LibriSpeech-(2000-hours)\",\n",
"]"
],
"metadata": {
"id": "qy-5aDAgzuGD"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"-----\n",
"\n",
"Now we create an automated template based on a config for the top portion of the readme file."
],
"metadata": {
"id": "_0w1X_z4NN5-"
}
},
{
"cell_type": "code",
"source": [
"from dataclasses import dataclass, field\n",
"from typing import List, Optional, Dict, Any\n",
"\n",
"@dataclass\n",
"class NeMoHuggingFaceModelConfig:\n",
" language: List[str]\n",
" license: str\n",
"\n",
" library_name: str = \"nemo\"\n",
" datasets: List[str] = field(default_factory=lambda: DATASETS)\n",
" thumbnail: Optional[str] = None\n",
" tags: List[str] = field(default_factory=lambda: TAGS)\n",
" model_index: Any = field(default_factory=lambda: [dict(name=MODEL_NAME, results=[])])"
],
"metadata": {
"id": "O88WFyPJwjJD"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"config = NeMoHuggingFaceModelConfig(language=['en'], license=\"cc-by-4.0\") # choose appropriate license here\n",
"config = OmegaConf.structured(config)\n",
"\n",
"with open_dict(config):\n",
" # Update `model_index` to `model-index`\n",
" model_index = config.pop('model_index')\n",
" config['model-index'] = model_index\n",
"\n",
" # Replace all spaces with `-` in datasets\n",
" normalized_datasets = [ds_name.replace(\" \", \"-\") for ds_name in config['datasets']]\n",
" config['datasets'] = OmegaConf.create(normalized_datasets)\n",
"\n",
"print(OmegaConf.to_yaml(config))"
],
"metadata": {
"id": "BpInrBdNxxZ3"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Markdown Template\n",
"\n",
"Now that we have an auto-generated header for our readme, next, we write down some template markdown for the actual contents of the markdown.\n",
"\n",
"You can edit the code here directly if you want, or if you prefer the GUI to see the actual changes in real-time, you can finish uploading this model card and then edit the readme file on the Hugging Face webpage itself."
],
"metadata": {
"id": "0TECX8QrC6FY"
}
},
{
"cell_type": "code",
"source": [
"hf_model_name = f'{username}/{MODEL_NAME}'\n",
"\n",
"TEMPLATE = f\"\"\"\n",
"## Model Overview\n",
"\n",
"<DESCRIBE IN ONE LINE THE MODEL AND ITS USE>\n",
"\n",
"## NVIDIA NeMo: Training\n",
"\n",
"To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version.\n",
"```\n",
"pip install nemo_toolkit['all']\n",
"``` \n",
"\n",
"## How to Use this Model\n",
"\n",
"The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.\n",
"\n",
"### Automatically instantiate the model\n",
"\n",
"```python\n",
"import nemo.collections.asr as nemo_asr\n",
"asr_model = nemo_asr.models.ASRModel.from_pretrained(\"{hf_model_name}\")\n",
"```\n",
"\n",
"### Transcribing using Python\n",
"First, let's get a sample\n",
"```\n",
"wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav\n",
"```\n",
"Then simply do:\n",
"```\n",
"asr_model.transcribe(['2086-149220-0033.wav'])\n",
"```\n",
"\n",
"### Transcribing many audio files\n",
"\n",
"```shell\n",
"python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py \\\n",
" pretrained_name=\"{hf_model_name}\" \\\n",
" audio_dir=\"<DIRECTORY CONTAINING AUDIO FILES>\"\n",
"```\n",
"\n",
"### Input\n",
"\n",
"This model accepts 16000 KHz Mono-channel Audio (wav files) as input.\n",
"\n",
"### Output\n",
"\n",
"This model provides transcribed speech as a string for a given audio sample.\n",
"\n",
"## Model Architecture\n",
"\n",
"<ADD SOME INFORMATION ABOUT THE ARCHITECTURE>\n",
"\n",
"## Training\n",
"\n",
"<ADD INFORMATION ABOUT HOW THE MODEL WAS TRAINED - HOW MANY EPOCHS, AMOUNT OF COMPUTE ETC>\n",
"\n",
"### Datasets\n",
"\n",
"<LIST THE NAME AND SPLITS OF DATASETS USED TO TRAIN THIS MODEL (ALONG WITH LANGUAGE AND ANY ADDITIONAL INFORMATION)>\n",
"\n",
"## Performance\n",
"\n",
"<LIST THE SCORES OF THE MODEL - \n",
" OR\n",
"USE THE Hugging Face Evaluate LiBRARY TO UPLOAD METRICS>\n",
"\n",
"## Limitations\n",
"\n",
"<DECLARE ANY POTENTIAL LIMITATIONS OF THE MODEL>\n",
"\n",
"Eg: \n",
"Since this model was trained on publically available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech.\n",
"\n",
"\n",
"## References\n",
"\n",
"<ADD ANY REFERENCES HERE AS NEEDED>\n",
"\n",
"[1] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)\n",
"\n",
"\"\"\""
],
"metadata": {
"id": "SSmm7_OiC9Ex"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"-----\n",
"\n",
"Below, we will upload this model card in a temporary file called **`\"readme_template.md\"`**. This is done to prevent overwriting of the \"final\" model card that the user may have manually edited.\n",
"\n",
"Once this step is finished, **please copy the contents of this file, create a README.md file and paste the contents into it**."
],
"metadata": {
"id": "KPa53S_5NzNp"
}
},
{
"cell_type": "code",
"source": [
"local_dir = f'model-{MODEL_NAME}/'\n",
"hf_model_name = f'{username}/{MODEL_NAME}'\n",
"\n",
"commit_message = \"Upload config\"\n",
"filename = 'readme_template.md'\n",
"\n",
"with Repository(local_dir=local_dir, clone_from=hf_model_name, repo_type='model').commit(commit_message):\n",
" with open(filename, 'w') as f:\n",
" f.write(\"---\\n\")\n",
" f.write(OmegaConf.to_yaml(config))\n",
" f.write(\"\\n---\\n\\n\")\n",
" f.write(TEMPLATE)\n",
" "
],
"metadata": {
"id": "0vk5KK4gzpSU"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"-----\n",
"\n",
"Please visit the URL below to copy the contents of the `readme_template.md` file into your `README.md` file."
],
"metadata": {
"id": "dfXoihCQmWDa"
}
},
{
"cell_type": "code",
"source": [
"hf_url = f'https://huggingface.co/{username}/{MODEL_NAME}'\n",
"print(f\"Visit {hf_url} to edit your model card from the generated template file `{filename}`\")"
],
"metadata": {
"id": "but-5LuLTHFd"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Evaluation Results\n",
"\n",
"Now that we have both the model checkpoint and the readme uploaded to the Hub, we can optionally add some evaluation results to the card as well!\n",
"\n",
"While this next section is optional, it is highly encouraged to do!"
],
"metadata": {
"id": "5vPEnlE62dGU"
}
},
{
"cell_type": "code",
"source": [
"import evaluate\n",
"# evaluate.list_evaluation_modules(module_type='metric', with_details=True)"
],
"metadata": {
"id": "rkXMtapA0YzH"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Uncomment in order to see what values you can supply to the `evaluate` library to push to the Hub.\n",
"# help(evaluate.push_to_hub)"
],
"metadata": {
"id": "50rzG9Qb3yLR"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"hf_model_name = f'{username}/{MODEL_NAME}'\n",
"metric_value = 8.1 # value obtained from https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_conformer_ctc_small \n",
"\n",
"evaluate.push_to_hub(\n",
" model_id=hf_model_name,\n",
" task_type=\"automatic-speech-recognition\",\n",
" dataset_type=\"librispeech_asr\",\n",
" dataset_name=\"Librispeech (clean)\",\n",
" metric_type=\"wer\",\n",
" metric_name=\"WER\",\n",
" dataset_split=\"test\", # corresponds to test-clean set\n",
" dataset_config=\"other\", # corresponds to test-clean set\n",
" dataset_args=dict(language=\"en\"), # metadata for dataset\n",
" # the actual score obtained by the model\n",
" metric_value=metric_value,\n",
")"
],
"metadata": {
"id": "5A4g3SGf4d0V"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"-----\n",
"\n",
"Done! Now we have a model checkpoint, a model card as well as evaluation results all set up for the NeMo model on Hugging Face!\n",
"\n",
"To add more metrics, you can copy-paste the above cell and repeat the procedure for as many metrics as needed!"
],
"metadata": {
"id": "f3YYa7liO_m3"
}
}
]
} |