File size: 77,595 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "yS2xVGrLrphl"
},
"outputs": [],
"source": [
"\"\"\"\n",
"You can run either this notebook locally (if you have all the dependencies and a GPU) or on Google Colab.\n",
"\n",
"Instructions for setting up Colab are as follows:\n",
"1. Open a new Python 3 notebook.\n",
"2. Import this notebook from GitHub (File -> Upload Notebook -> \"GITHUB\" tab -> copy/paste GitHub URL)\n",
"3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator)\n",
"4. Run this cell to set up dependencies.\n",
"\"\"\"\n",
"# If you're using Google Colab and not running locally, run this cell.\n",
"\n",
"## Install dependencies\n",
"!apt-get install sox libsndfile1 ffmpeg\n",
"!pip install wget\n",
"!pip install text-unidecode\n",
"\n",
"# ## Install NeMo\n",
"BRANCH = 'r1.17.0'\n",
"!python -m pip install git+https://github.com/NVIDIA/NeMo.git@$BRANCH#egg=nemo_toolkit[all]\n",
"\n",
"## Grab the config we'll use in this example\n",
"!mkdir configs"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ivKMObsjy9Om"
},
"source": [
"# Adapters Support in NeMo Models\n",
"\n",
"In NeMo, we often train models and fine-tune them for a specific task. This is a reasonable approach when the models are just a few million parameters. However, this approach quickly becomes infeasible when approaching hundreds of millions or even billions of parameters. \n",
"\n",
"As a potential solution to such a scenario, where fine-tuning a massive model is no longer feasible, we look to specialized [Adapters](https://arxiv.org/abs/1902.00751) to specialize our model on a specific domain or task. Adapters require a fraction of the total number of parameters as the original model and are much more efficient to fine-tune.\n",
"\n",
"In this tutorial, we will discuss how to update any torch.nn.Module to support Adapters, and going further, how to enable NeMo models with Adapter support for their components.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "lZ7mPouNEXjB"
},
"source": [
"## What are Adapters?\n",
"\n",
"Adapters are a straightforward concept - one formulation can be shown by the diagram below. At their simplest, they are residual Feedforward layers that compress the input dimension ($D$) to a small bottleneck dimension ($H$), such that $R^D \\text{->} R^H$, compute an activation (such as ReLU), finally mapping $R^H \\text{->} R^D$ with another Feedforward layer. This output is then added to the input via a simple residual connection.\n",
"\n",
"<div align=\"center\">\n",
" <img src=\"https://mermaid.ink/img/pako:eNptkLFqwzAQhl9F3ORAPDSjA4EUx6RgXEjbycpwWOdG1JaMfEoakrx7ZcfpUKrlxH_fz4d0gcoqggTqxp6qAzoW76k0Ipx1-WI6z3sRxyuRF1GOZ3KisK6d3YG8GFdZ9hRJeLbMDRmqvkRGpDLrTuiUiEWUigBtlyIVqzBnEqZ66I39dcX6iKytKXeUf-wn-286QoFeBMvmu0PTD-EfyXaQpP9JFmP_1XN4S3kfD8W4ue6o18pjc52gYQlzaMm1qFX4msuQSOADtSQhCdfaOupZgjS3QPpOIdNGabYOkhqbnuaAnu3b2VSQsPP0gFKNnw7bibr9AJkZdXU\" height=100% />\n",
"</div>\n",
"\n",
"-----\n",
"\n",
"Adapter modules such as this are usually initialized such that the initial output of the adapter will always be zeros so as to prevent degradation of the original model's performance due to addition of such modules."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_kE1oh1_IdLW"
},
"source": [
"## Emulating a standard architecture\n",
"\n",
"For this tutorial, the focus will be on demonstrating how to modify an existing architecture to add Adapter support.\n",
"\n",
"We will focus on a trivial model implemented using simple Multi-Layer Perceptrons. Still, the model itself will emulate a standard Encoder-Decoder architecture (commonly used in multiple domains, such as ASR, NLP, NMT etc). \n",
"\n",
"We will also skip the implementation of datasets, data loaders, losses, metrics, and the Pytorch Lightning \"steps\" (trainer, validation, test). "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "3iYvsUFpIISX"
},
"outputs": [],
"source": [
"import torch\n",
"import torch.nn as nn\n",
"from nemo.core import NeuralModule, ModelPT\n",
"\n",
"from hydra.utils import instantiate\n",
"from omegaconf import DictConfig, OmegaConf"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "5qchb0kHZ6xV"
},
"outputs": [],
"source": [
"class MLP(torch.nn.Module):\n",
" def __init__(self, dim: int = 50):\n",
" super().__init__()\n",
"\n",
" self.fc = torch.nn.Linear(dim, dim)\n",
" self.ln = torch.nn.LayerNorm(dim)\n",
"\n",
" def forward(self, x):\n",
" x = self.fc(x)\n",
" x = self.ln(x)\n",
" return x\n",
"\n",
"class ResidualMLP(torch.nn.Module):\n",
" def __init__(self, dim: int, num_layers: int):\n",
" super().__init__()\n",
"\n",
" self.dim = dim\n",
" self.num_layers = num_layers\n",
" self.layers = nn.ModuleList([MLP(dim) for _ in range(num_layers)])\n",
" \n",
" def forward(self, x):\n",
" input = x\n",
" for layer in self.layers:\n",
" x = layer(x)\n",
" x = x + input\n",
" input = x\n",
" return x"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "NgBYZMyFcJiO"
},
"source": [
"-----\n",
"Next we implement a simple model that has two \"modules\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "P4lo4E-Abfm_"
},
"outputs": [],
"source": [
"class SimpleModel(ModelPT):\n",
" def __init__(self, cfg, trainer=None):\n",
" super().__init__(cfg, trainer=trainer)\n",
"\n",
" self.encoder = instantiate(cfg.encoder) # type: ResidualMLP\n",
" self.decoder = instantiate(cfg.decoder) # type: ResidualMLP\n",
" self.projection = nn.Linear(self.decoder.dim, cfg.out_features)\n",
"\n",
" def forward(self, x):\n",
" y = self.encoder(x)\n",
" z = self.decoder(y)\n",
" out = self.projection(z)\n",
" return out\n",
"\n",
" def list_available_models(cls):\n",
" return []\n",
"\n",
" def setup_training_data(self, train_data_config):\n",
" pass\n",
"\n",
" def setup_validation_data(self, val_data_config):\n",
" pass"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "oE6401-Bdj-K"
},
"source": [
"## Initialize the basic model\n",
"\n",
"The above model is a simple residual MLP network with two components, an encoder, and a decoder block. It may not do so well on real-world tasks, but it is sufficient for this demonstration.\n",
"\n",
"Next, let's create a helper to generate a config for this model and create a new model using that config!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "6xgMDKDvdbKw"
},
"outputs": [],
"source": [
"def get_classpath(cls):\n",
" return f'{cls.__module__}.{cls.__name__}'\n",
"\n",
"def get_model_config(dim=512):\n",
" config = OmegaConf.create(\n",
" {\n",
" 'in_features': dim,\n",
" 'out_features': 10,\n",
" 'encoder': {'_target_': get_classpath(ResidualMLP), 'dim': dim, 'num_layers': 4},\n",
" 'decoder': {'_target_': get_classpath(ResidualMLP), 'dim': dim, 'num_layers': 2},\n",
" }\n",
" )\n",
" return config"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "HuCHbKM6eXgs"
},
"outputs": [],
"source": [
"dim = 512\n",
"model_cfg = get_model_config(dim)\n",
"model = SimpleModel(model_cfg)\n",
"model.summarize()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Ecba1X-6egs8"
},
"outputs": [],
"source": [
"# Check if the forward pass works !\n",
"with torch.no_grad():\n",
" input_data = torch.randn(8, dim)\n",
" out = model(input_data)\n",
" print(out.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "bQUitVFafW6q"
},
"source": [
"# Incorporating Adapters - Module by Module\n",
"\n",
"Now that we have a basic Model that we can successfully perform a forward pass on, we can add adapter support to the Model and its modules - layer by layer.\n",
"\n",
"When considering the addition of adapter support, we work backward, going from the lowest level module used, and build a chain that forwards the methods of the adapters from the top-level Model to the bottom-level module(s) / layer(s)."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "-YcePlyLgUD4"
},
"source": [
"# Adapter support in the lowest level module\n",
"\n",
"As we work backward in the model chain, we look at the `MLP` module that creates a `Linear` and `LayerNorm` layer. We now extend this MLP module with the `AdapterModuleMixin` that is available inside `nemo.core.adapter_mixins`.\n",
"\n",
"It is generally advised to directly update the code of the module, though there are other ways to implement this (shown later in the tutorial).\n",
"\n",
"-----\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "daSapfg0lpUj"
},
"source": [
"## What is a `mixin`? \n",
"A `mixin` is generally a term used to refer to a class that is **inherited by another class**, **adds some functionality to another class**, _but cannot be used on its own_. A mixin can be loosely considered a relatively safe way to incorporate additional functionality into a class via multiple inheritances. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "WXE2cJrre9SN"
},
"outputs": [],
"source": [
"from nemo.core import adapter_mixins"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "U7m8MScqkw8_"
},
"outputs": [],
"source": [
"help(adapter_mixins.AdapterModuleMixin)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ML_Uaig8iLKR"
},
"outputs": [],
"source": [
"# NOTE: See the *two* classes being inherited here !\n",
"class MLP(torch.nn.Module, adapter_mixins.AdapterModuleMixin):\n",
" def __init__(self, dim: int = 50):\n",
" super().__init__()\n",
"\n",
" self.fc = torch.nn.Linear(dim, dim)\n",
" self.ln = torch.nn.LayerNorm(dim)\n",
"\n",
" def forward(self, x):\n",
" x = self.fc(x)\n",
" x = self.ln(x)\n",
"\n",
" # The only necessary change to the module code !\n",
" if self.is_adapter_available():\n",
" x = self.forward_enabled_adapters(x)\n",
" return x\n",
"\n",
" # add a utility method to calculate number of parameters (or we could simple extend nemo.core.NeuralModule instead)\n",
" @property\n",
" def num_weights(self):\n",
" num: int = 0\n",
" for p in self.parameters():\n",
" if p.requires_grad:\n",
" num += p.numel()\n",
" return num"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "cUsZL7MJlKly"
},
"source": [
"-----\n",
"\n",
"That's it! We now have an MLP layer that has nearly full adapter support! We will try out a few of the adapter functionalities below to get a teaser of what we can expect as we go further into this tutorial"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fV4Ww-kHlc2_"
},
"source": [
"## Experimenting with a module level adapter\n",
"\n",
"We will now instantiate the newly augmented `MLP` model above and explore all the functionality that has been added via the `AdapterModuleMixin` class - without having to write too much supporting code!"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "OJBBbWFTmgni"
},
"source": [
"-----\n",
"\n",
"First, let's create a `MLP` module and print the number of trainable parameters (before adding any adapters)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "bUczqEM4lJYb"
},
"outputs": [],
"source": [
"mlp = MLP(dim)\n",
"\n",
"print(mlp)\n",
"print(\"Num trainable parameters (without adapters):\", mlp.num_weights)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "VY6rJroGmwEg"
},
"source": [
"## Adapter Modules\n",
"\n",
"Next, let us import and add an adapter or two to this module! We first import `adapter_modules` from the NeMo `common` collections. This module contains pre-defined Adapter modules that can be attached to other torch.nn.Modules!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "dol4-4vmmenZ"
},
"outputs": [],
"source": [
"from nemo.collections.common.parts import adapter_modules"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "rtZtXNSHo1LB"
},
"outputs": [],
"source": [
"# Next we look at one of the adapter modules - the LinearAdapter\n",
"linear_adapter = adapter_modules.LinearAdapter(in_features=dim, dim=5)\n",
"print(linear_adapter)"
]
},
{
"cell_type": "markdown",
"source": [
"-----\n",
"You will often not directly with this module, instead of passing the Config Dataclass to the `AdapterModuleMixin` methods. We see an example below - "
],
"metadata": {
"id": "0E2877IlIVoM"
}
},
{
"cell_type": "markdown",
"source": [
"## [Optional] Constructing Adapter Components\n",
"\n",
"Linear Adapter Modules are not the only type of adapters you can create ! In PyTorch, any torch.nn.Module can be made into an Adapter component.\n",
"\n",
"For example, you can potentially convert a pre-existing pytorch module into an adapter component. The below section is **optional**, but is recommended if you wish to create your own adapters.\n"
],
"metadata": {
"id": "8eH6mW792lkY"
}
},
{
"cell_type": "markdown",
"source": [
"------\n",
"First, let us start with a simple PyTorch module."
],
"metadata": {
"id": "lgsyaQHI3w5X"
}
},
{
"cell_type": "code",
"source": [
"class SimpleModule(torch.nn.Module):\n",
" def __init__(self, size: int):\n",
" super().__init__()\n",
" self.size = size\n",
" self.model = torch.nn.Sequential(\n",
" torch.nn.Linear(size, size, bias=False),\n",
" torch.nn.Identity(),\n",
" )\n",
" \n",
" def forward(self, x):\n",
" return self.model(x)"
],
"metadata": {
"id": "wAfA3r0b3fpi"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"### Adapter Strategy\n",
"\n",
"Adapter modules are, at the end of the day, simply PyTorch modules. Just as PyTorch modules, they take some input tensors, perform some operation and then return some result.\n",
"\n",
"There are many ways to integrate adapters - add them as a residual, multiply pointwise, concatenate with the input (at the end or the beginning). The Adapter Strategy class determines how an adapter integrates with its input."
],
"metadata": {
"id": "hMKoxc0e5c14"
}
},
{
"cell_type": "code",
"source": [
"# The earlier LinearAdapter has a simple ResidualAddStrategy\n",
"# Uncomment below to see the ResidualAddAdapterStrategy definition\n",
"# help(linear_adapter.adapter_strategy)"
],
"metadata": {
"id": "1DVeRqH65IN8"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"### Creating a custom Adapter Strategy\n",
"\n",
"Residual Add strategy can be considered the simple operation $f(x) = x + adapter(x)$ such that $adapter$'s initial outputs without training should be 0. \n",
"\n",
"In doing so, the output of the adapter augmented model is originally just $f(x) = x$, and so the model retains the exact performance of the original model (without any adapters).\n",
"\n",
"-----\n",
"\n",
"Below, we will create a Multiplication adapter strategy simply as a demonstration."
],
"metadata": {
"id": "5mWowiS269h8"
}
},
{
"cell_type": "code",
"source": [
"from nemo.core.classes.mixins import adapter_mixin_strategies"
],
"metadata": {
"id": "teiTVBMq687x"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"We will implement a special `forward` method of adapters as follows"
],
"metadata": {
"id": "BS2W1a919KDr"
}
},
{
"cell_type": "code",
"source": [
"# Uncomment to see the definition of the AbstractAdapterStrategy\n",
"# help(adapter_mixin_strategies.AbstractAdapterStrategy)"
],
"metadata": {
"id": "G9_bq05P9Izh"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"class MultiplicationAdapterStrategy(adapter_mixin_strategies.AbstractAdapterStrategy):\n",
"\n",
" def __init__(self, scaling_factor: float = 1.0):\n",
" super().__init__()\n",
" self.scale = scaling_factor\n",
"\n",
" def forward(self, input: torch.Tensor, adapter: torch.nn.Module, *, module: 'AdapterModuleMixin'):\n",
" # This is the forward method that takes in the previous input (here, its a tensor, but it can be a dictionary, a tuple, a class, anything really).\n",
" # The second argument is the adapter that is currently being applied to this input\n",
" # The final argument is the entire nn.Module that supports adapters.\n",
" # In this case, the final argument would be the entire `MLP` module\n",
" \n",
" # Equivalent to f(x) = x * adapter(x)\n",
" adapter_out = adapter(input) # compute the adapter output from the input(s)\n",
" result = input * adapter_out\n",
"\n",
" # Apply scaling factor. Equivalent to f(x) = scale * (x * adapter(x))\n",
" result = self.scale * result\n",
" return result\n"
],
"metadata": {
"id": "T3agPtjA3fst"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"### Design a corresponding dataclass for the Adapter Strategy\n",
"\n",
"In order to make usage of this class easier, you should create a Dataclass that can be used to create the strategy easily. We show an example below:"
],
"metadata": {
"id": "ZOS9Z3KVAGH2"
}
},
{
"cell_type": "code",
"source": [
"from dataclasses import dataclass\n",
"\n",
"@dataclass\n",
"class MultiplicationAdapterStrategyConfig:\n",
" scaling_factor: float = 1.0\n",
"\n",
" # mandatory field\n",
" _target_: str = \"{0}.{1}\".format(\n",
" MultiplicationAdapterStrategy.__module__, MultiplicationAdapterStrategy.__name__\n",
" ) "
],
"metadata": {
"id": "MI4oYRYDAeqb"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"### Creating a Custom Adapter Component\n",
"\n",
"Now that we have both the basic PyTorch module (`SimpleModule`) as well as the Adapter Strategy (`MultiplicationAdapterStrategy`), we can now construct a new adapter component.\n",
"\n",
"The prime difference between a basic PyTorch module and an adapter component is the `adapter_strategy` - it defines how an adapter integrates with the original input. "
],
"metadata": {
"id": "mZ22m_ZK_ifY"
}
},
{
"cell_type": "code",
"source": [
"class SimpleModuleAdapter(SimpleModule, adapter_modules.AdapterModuleUtil):\n",
"\n",
" def __init__(self, size: int, adapter_strategy: MultiplicationAdapterStrategy = None):\n",
" \"\"\"\n",
" The input arguments should match the original module so you can pass the inputs to the module.\n",
" It should also accept an adapter strategy.\n",
"\n",
" We will then use the method `setup_adapter_strategy()` to prepare the component to be used as an adapter.\n",
" Note: Passing None to the strategy will let it pick a default strategy provided by the method\n",
" `get_default_strategy_config()`.\n",
" \"\"\"\n",
" super().__init__(size=size)\n",
"\n",
" # Prepare the adapter strategy\n",
" self.setup_adapter_strategy(adapter_strategy)\n",
"\n",
" # Initialize the weights to be 0 at init\n",
" self.reset_parameters()\n",
"\n",
" # Note: In this case, because we didn't add new modules, nor change how the original forward works\n",
" # We dont need to subclass and override forward() !\n",
" \n",
" def reset_parameters(self):\n",
" # We normally want an adapter at initialization to have no effect on the output\n",
" # Therefore we replace the random uniform with a simple identity matrix, which will cause\n",
" # the output of the adapter to match the input\n",
" with torch.no_grad():\n",
" self.model[0].weight = torch.nn.Parameter(torch.eye(self.size))\n",
" \n",
"\n",
" def get_default_strategy_config(self) -> 'dataclass':\n",
" \"\"\"\n",
" Make the default adapter strategy of this component be the `MultiplicationAdapterStrategy()` \n",
" \"\"\"\n",
" return MultiplicationAdapterStrategyConfig()"
],
"metadata": {
"id": "wCcdXIix__Yq"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"-----\n",
"Let's quickly test whether the adapter behaves as expected"
],
"metadata": {
"id": "lYfjhWBtEBYj"
}
},
{
"cell_type": "code",
"source": [
"simple_adapter = SimpleModuleAdapter(size=5)\n",
"multiplication_strategy = simple_adapter.adapter_strategy\n",
"x = torch.randn(1, 5)\n",
"adapter_x = simple_adapter(x)\n",
"output = multiplication_strategy(input=x, adapter=simple_adapter, module=None) # Normally you would pass the module here, but in this example can be skipped.\n",
"print(\"Original input :\", x)\n",
"print(\"Adapter output :\", adapter_x)\n",
"print(\"Strategy output:\", output)"
],
"metadata": {
"id": "tVkikcmCEJun"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"We see that the original input passes through the adapter, which results in the original values being returned successfully, and then the adapter strategy multiplies the two values (effectively computing the square of the input).\n",
"\n",
"This is a sufficient demonstration of creating custom adapters, and we would normally not perform elementwise multiplication as an adapter strategy. Normally we would prefer the output of the strategy to be equal to the original init, at least at initialization."
],
"metadata": {
"id": "mi7WpFgxHmGQ"
}
},
{
"cell_type": "markdown",
"source": [
"### Design a corresponding dataclass for the Adapter Component\n",
"\n",
"In order to make usage of this Adapter component easier, you should create a Dataclass that can be used to create the component easily. We show an example below:"
],
"metadata": {
"id": "OrmCQCX6ImKs"
}
},
{
"cell_type": "code",
"source": [
"from typing import Optional\n",
"\n",
"@dataclass\n",
"class SimpleModuleAdapterConfig:\n",
" size: int\n",
" adapter_strategy: Optional[MultiplicationAdapterStrategyConfig] = None\n",
"\n",
" # mandatory field\n",
" _target_: str = \"{0}.{1}\".format(\n",
" SimpleModuleAdapter.__module__, SimpleModuleAdapter.__name__\n",
" ) "
],
"metadata": {
"id": "Ml17OoOVJOwR"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "sB9qPX1qoqJU"
},
"source": [
"## Adding an Adapter Module\n",
"\n",
"Since `MLP` inherits `AdapterModuleMixin`, it also inherits a set of methods that perform adapter module manipulations - such as adding a new adapter.\n",
"\n",
"When users want to add an adapter, they can call `add_adapter()` with two specific arguments - `name` and `cfg`.\n",
"\n",
"Arguments - \n",
"- `name`: A string name that must be **locally unique** (for modules) and **globally unique** (for models). The name may also support \":\" to delegate that the adapter belongs to specific modules only (this is discussed towards the end of the tutorial).\n",
"- `cfg`: A dataclass / OmegaConf config that contains the `_target_` attribute pointing to the classpath of an Adapter Module, along with any additional required attributes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Du2uPUSdni9D"
},
"outputs": [],
"source": [
"mlp.add_adapter(name='adapter_1', cfg=adapter_modules.LinearAdapterConfig(in_features=dim, dim=5))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "92vSc2k_xuHk"
},
"outputs": [],
"source": [
"# Now check the new parameter count of this MLP module, it should be higher than the previous count\n",
"print(\"New param count :\", mlp.num_weights)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eh4qTdTUyWTF"
},
"source": [
"-----\n",
"\n",
"**Note**: You can add as many adapters as are needed! While in this tutorial, we will only add one, we usually recommend adding one adapter for every task you want to specialize in. \n",
"\n",
"Also, note that while it is possible to train multiple adapters at once (add many adapters, enable them all, then unfreeze them), we recommend training just one adapter per task."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "w0CUr4m2sVRH"
},
"source": [
"-----\n",
"**Note**: If you try to add the same adapter multiple times, you will see the below error message! \n",
"\n",
"Remember, adapter names must be **locally** unique at the module level and **globally** unique at the model level!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "p497PTCBsoIM"
},
"outputs": [],
"source": [
"# Uncomment to see the error message - \n",
"# mlp.add_adapter(name='adapter_1', cfg=adapter_modules.LinearAdapterConfig(in_features=dim, dim=10))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "EWgsqsCns4Yr"
},
"source": [
"## Get all enabled Adapter Modules\n",
"\n",
"Next, we use `get_enabled_adapters()` to return a list of names of all the enabled adapters currently available to this module."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "jXuGQoFus3qd"
},
"outputs": [],
"source": [
"mlp.get_enabled_adapters()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "H-UeYsFXtQqj"
},
"source": [
"## Set the state of Adapter Modules\n",
"\n",
"We can get the enabled adapter names with the above method, but how do we set whether an adapter module should be enabled or disabled? \n",
"\n",
"For that, we use the `set_enabled_adapter()` method. It has a few arguments - \n",
"- `name`: An optional string name of an adapter, which will specifically enable or disable only that adapter. If no `name` is provided, all adapter modules will have their state set to the new value.\n",
"- `enabled`: A bool, whether the adapter should be enabled or not.\n",
"\n",
"-----\n",
"\n",
"Enabling an adapter simply enables the forward pass of that adapter and nothing more. It does not freeze / unfreeze the weights of the adapter itself, allowing more complex interactions to occur in combination with other adapters.\n",
"\n",
"For example, one can add an adapter to a model, train it and then save the model. The restored model can then add yet another adapter. Prior to training this second adapter, the user can decide to utilize the outputs of the first adapter instead of the original model's outputs. To accomplish this, we can enable both adapters, but freezing the weights of the first adapter, and train just the second adapter."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "0__7RFaWtPD6"
},
"outputs": [],
"source": [
"# Disable all adapters\n",
"mlp.set_enabled_adapters(enabled=False)\n",
"print(\"Enabled adapters :\", mlp.get_enabled_adapters())\n",
"\n",
"# Enable just one adapter\n",
"mlp.set_enabled_adapters(name=\"adapter_1\", enabled=True)\n",
"print(\"Enabled adapters :\", mlp.get_enabled_adapters())"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "KzT3kwvRubFT"
},
"source": [
"## Check if Adapter Module(s) are available / enabled\n",
"\n",
"An extension of the above two methods is to check if the current module has any active adapter module or not. To do so, you can use `is_adapter_available()`.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "5quE42kAusiX"
},
"outputs": [],
"source": [
"mlp.is_adapter_available()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "xRCobs9hvEeU"
},
"source": [
"## Adapter functionality methods\n",
"\n",
"The above few methods form the core of the functionality to enable adapters to be added and modified to a module, but they don't use the added adapter modules!\n",
"\n",
"Therefore, the following functionality methods are used to leverage adapters properly and need not be overridden by the user (unless required for some special case)."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6ybsJ9zRx6W7"
},
"source": [
"### `forward_enabled_adapters()`\n",
"To use these adapters, we utilize the `forward_adapter_modules()` method.\n",
"\n",
"To utilize any enabled adapters, the module that inherits `AdapterModuleMixin` should first check if any adapters are enabled and then call this method to forward the adapter modules on the input data. \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "1F9IibFKv9va"
},
"outputs": [],
"source": [
"# Check `forward_enabled_adapters()`\n",
"out = mlp.forward_enabled_adapters(input_data)\n",
"print(out.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "zzN0RlZI5M-l"
},
"source": [
"### `forward_single_enabled_adapter_()`\n",
"A method that can be sub-classed in order to provide custom logic for the forward pass of the adapters. For example, we may wish to provide some adapters with different set of inputs, or check whether we support an adapter type or not before we perform forward pass.\n",
"\n",
"It can be useful to check the type of the adapter, and then use the additional information prior to forwarding the input to any specific adapter."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "YO2dXe7T5PIQ"
},
"outputs": [],
"source": [
"# Check `forward_single_enabled_adapter_()`\n",
"adapter_name = mlp.get_enabled_adapters()[0] # we have enabled just one adapter\n",
"adapter_module = mlp.adapter_layer[adapter_name] # get the adapter module with this name\n",
"adapter_strategy = adapter_module.adapter_strategy # get the adapter strategy for this adapter\n",
"\n",
"out = mlp.forward_single_enabled_adapter_(input_data, adapter_module, adapter_name=adapter_name, adapter_strategy=adapter_strategy)\n",
"print(out.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "bU-OS3wk7FW9"
},
"source": [
"-----\n",
"For further information about adapter forward pass, adapter strategy please refer to the documentation section for adapters."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "b1mPF9qVx-HA"
},
"source": [
"### `unfreeze_enabled_adapters()`\n",
"One of the core benefits of adapters is that they do not need the entire model to be trained. We can freeze the rest of the original model/modules and train the adapter modules themselves. \n",
"\n",
"We can do this in two steps - \n",
"- Call model.freeze() (at the highest level)\n",
"- Call `unfreeze_enabled_adapters()` that will recursively unfreeze just the adapter modules that are enabled."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "t6Qdk8YHw5W_"
},
"outputs": [],
"source": [
"# First setup some utility functions (this is part of NeuralModule)\n",
"def freeze(m):\n",
" for param in m.parameters():\n",
" param.requires_grad = False\n",
" m.eval()\n",
"\n",
"def unfreeze(m):\n",
" for param in m.parameters():\n",
" param.requires_grad = True\n",
" m.train()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "95KGRNwxxlia"
},
"outputs": [],
"source": [
"freeze(mlp)\n",
"print(\"MLP frozen params :\", mlp.num_weights)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Y3xjntCgxhee"
},
"outputs": [],
"source": [
"# Check `unfreeze_enabled_adapters()` - param count should be lower than the previous total (original + adapter)\n",
"mlp.unfreeze_enabled_adapters()\n",
"print(\"MLP unfrozen adapter params :\", mlp.num_weights)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "vQjz_RIilg1L"
},
"source": [
"# Adapter support in intermediate level modules\n",
"\n",
"Above, we discussed many of the methods and capabilities added to a simple nn.Module via the `AdapterModuleMixin`. However, this module was the lowest building block in the model. Next, we will look into how to \"dispatch\" the calls from the intermediate module to the lower modules.\n",
"\n",
"We will aim for simplicity in this tutorial, modifying the minimal amount of code as possible. However, it is entirely possible to add much more sophisticated handling of intermediate layer dispatches to lower level modules."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "DsHudP-bz3bj"
},
"source": [
"## Intermediate modules that are instantiated via config\n",
"\n",
"Currently, we have a 3 level model -- \n",
"\n",
"`Top level Model (SimpleModel) -> Intermediate level Module (ResidualMLP) -> Bottom level Module (MLP)`. \n",
"\n",
"-----\n",
"\n",
"As you may have noticed, in earlier primer tutorials (NeMo Model Primer), we recommend the Model utilize configs to instantiate its intermediate modules. This allows users to swap in equivalent modules via the config and enjoy the rest of the utility of the Model itself without too many code changes.\n",
"\n",
"For such \"penultimate\" modules, we recommend creating a separate Adapter supported module that extends the original module rather than modifying the original module itself. This is merely a preference to avoid cluttering the original module code and can be ignored if the user wishes.\n",
"\n",
"For this guide, we will show the recommended setup so that best practices can be followed."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_f-Y-Oxm1tjH"
},
"source": [
"## Creating an Adapter-compatible \"Penultimate\" module\n",
"\n",
"First, we create the new Adapter compatible module as a separate class."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "DC-L1SsVllLy"
},
"outputs": [],
"source": [
"# NOTE: We subclass the original ResidualMLP, and add in the AdapterModuleMixin too\n",
"class ResidualMLPAdapter(ResidualMLP, adapter_mixins.AdapterModuleMixin):\n",
" pass"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "CuIlnrSW2m9t"
},
"source": [
"## Overriding the adapter methods\n",
"\n",
"Next, we override a few adapter methods, such that we dispatch these methods to all the blocks of `MLP` inside of the `ResidualMLP` module.\n",
"\n",
"Therefore, this will create/update the state / forward an adapter module inside the `MLP` modules!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "N3bcnXIy2mY9"
},
"outputs": [],
"source": [
"from typing import List, Optional\n",
"\n",
"class ResidualMLPAdapter(ResidualMLP, adapter_mixins.AdapterModuleMixin):\n",
" def add_adapter(self, name: str, cfg: DictConfig):\n",
" # call the same method on each `MLP` layer, collecting results\n",
" for layer in self.layers:\n",
" layer.add_adapter(name, cfg)\n",
" \n",
" def get_enabled_adapters(self) -> List[str]:\n",
" # call the same method on each `MLP` layer, collecting results\n",
" enabled_adapters = set([])\n",
" for layer in self.layers:\n",
" names = layer.get_enabled_adapters()\n",
" enabled_adapters.update(names)\n",
" return list(enabled_adapters)\n",
" \n",
" def set_enabled_adapters(self, name: Optional[str], enabled: bool):\n",
" # call the same method on each `MLP` layer, collecting results\n",
" for layer in self.layers:\n",
" layer.set_enabled_adapters(name, enabled)\n",
" \n",
" def is_adapter_available(self) -> bool:\n",
" # call the same method on each `MLP` layer, collecting results\n",
" is_available = any([layer.is_adapter_available() for layer in self.layers])\n",
" return is_available"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_-RHMG4W4pSY"
},
"source": [
"## Register the new adapter\n",
"\n",
"When we subclass a module to add Adapter functionality, it is essential to register such modules with the Adapter registry so that many convenient functions can be used later on. The adapter registry is a global collection of the base class and adapter compatible class that can be used later to update model configs more easily.\n",
"\n",
"The steps below are : \n",
"- Check if the registry has the base class via `get_registered_adapter()`.\n",
"- If it returns None, then register the base class and its compatible adapter class via `register_adapter()`.\n",
"\n",
"-----\n",
"\n",
"**Note**: that while in this trivial case, our penultimate module is, in fact the intermediate module, there may be real-world models with many more intermediate modules. In such a case, you may update such intermediate modules by directly extending `AdapterModuleMixin` and following the above steps without creating a new subclass. In such cases, you can also skip registering for these modules."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "sOUo-b042S9m"
},
"outputs": [],
"source": [
"if adapter_mixins.get_registered_adapter(ResidualMLP) is None:\n",
" adapter_mixins.register_adapter(ResidualMLP, ResidualMLPAdapter)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "BSaAnSxC6A6f"
},
"source": [
"-----\n",
"\n",
"That's all it takes to add support for intermediate modules! While adding the same (or similar) code for all intermediate modules may seem a little redundant, that is only because we are implementing the most naive dispatching. \n",
"\n",
"There are many interesting approaches to building adapters, such as adapters for only attention layers (before or after) or only for the final feed-forward (in conventional attention-based blocks). As such, intermediate layers have the total flexibility to dispatch these functions to lower layers."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_yeL62Js6sGb"
},
"source": [
"# Adapters support at top level Model\n",
"\n",
"Finally, after dispatching the above methods from the intermediate modules to the bottom module, we need to perform the final dispatch from the Model itself to the first (or penultimate if moving backward) module.\n",
"\n",
"In this case, we will subclass a different mixin class than the one we have been using till now. Instead of `AdapterModuleMixin`, we will instead subclass `AdapterModelPTMixin` - which has some functionality built into it to manage model level config (including saving and restoring adapter compatible models !)\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "aQpl_ML78Pw2"
},
"source": [
"## Extending `AdapterModelPTMixin`\n",
"\n",
"There are two ways in which one can inherit the top level mixin - \n",
"\n",
"(1) directly extend it in your current Model class\n",
"\n",
"(2) create a class that implements the additional functionality, then inherit that class.\n",
"\n",
"It might seem that option (2) is a more roundabout way of achieving (1). Still, it is done to keep the logic of adapter management outside of the complicated Model codebase since the Model itself is involved with many important details such as the setup of the modules, data loaders, optimizer/schedulers, losses, metrics, and the Pytorch Lightning \"steps\" - training, validation, and testing steps.\n",
"\n",
"-----\n",
"We will follow option (2) in this tutorial for clarity. Also, note that we will create new subclasses for each step for transparency (and to avoid burdening you with too much information at once). It is preferred to do all these steps within just one new class."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "85eprLBu55a0"
},
"outputs": [],
"source": [
"class SimpleModelAdapter(adapter_mixins.AdapterModelPTMixin):\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "j38nVuRoCiMb"
},
"outputs": [],
"source": [
"help(adapter_mixins.AdapterModelPTMixin)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5ILtH3PT8PQs"
},
"source": [
"## Overriding methods for selective dispatch\n",
"\n",
"There was an apparent distinction between how to dispatch adapter calls to the subsequent module. This was because the modules were homogeneous and shared typical behavior.\n",
"\n",
"However, there is no reason for the subsequent layers to share standard behavior at the model level. Think in terms of `encoder` vs. `decoder` Transformer layers - they are significantly different modules! Therefore why should their adapters be similar?\n",
"\n",
"At the top level, we can utilize input from the user to determine how to construct adapters for such logically heterogeneous components. The following sections will describe how we can utilize **global** and **module** level adapters to separate the behavior and construction of adapters for each **component** of the Model."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5EwR-Onc-xbr"
},
"source": [
"## Overriding setup_adapters()\n",
"\n",
"When a model must be restored, it must carefully load the parameters of all the modules within it. Till now, we have been able to augment torch.nn.Module(s) with Adapter information and capabilities, but we have not preserved this information anywhere.\n",
"\n",
"Therefore if we were to turn off the notebook and try to restore a saved checkpoint, restoration would fail because the new model does not have the information of the adapters that it previously added, and so state dict matching will fail.\n",
"\n",
"This issue is resolved by overriding `setup_adapters()` and calling it inside the Model constructor."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "rsSAb99a9l86"
},
"outputs": [],
"source": [
"# Import the class explicitly to make instance checks easier\n",
"from nemo.core.classes.mixins.adapter_mixins import AdapterModuleMixin\n",
"\n",
"class SimpleModelAdapterSetupAdapters(SimpleModelAdapter):\n",
" def setup_adapters(self):\n",
" # First check that any of the modules support adapters or not\n",
" supports_adapters = False\n",
"\n",
" # Check the inheriting class' modules supports adapters or not\n",
" if hasattr(self, 'encoder') and isinstance(self.encoder, AdapterModuleMixin):\n",
" supports_adapters |= True\n",
"\n",
" if hasattr(self, 'decoder') and isinstance(self.decoder, AdapterModuleMixin):\n",
" supports_adapters |= True\n",
"\n",
" # If any class supports it, try to restore adapters\n",
" if supports_adapters:\n",
" super().setup_adapters()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "kvmY6XJtApK4"
},
"source": [
"-----\n",
"\n",
"In this step, we merely check if any of the modules we have created support adapters or not. If any of them do, we call the super() method to try to restore any adapters if needed."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Z2eTu1pFA2j-"
},
"source": [
"## Overriding add_adapter()\n",
"\n",
"Next up, we override `add_adapter`. Before jumping to the code, we must first discuss the types of adapters supported in NeMo.\n",
"\n",
"- `Global Adapters`: These adapters share their name and functionality with all supported modules. They are helpful when you are sure that one adapter can be shared between multiple model components. For example, the encoder and decoder share the same adapter.\n",
"- `Module Adapters`: These adapters are specific to each module they are designated to and, therefore, cannot share their name across multiple components of a model. They are denoted via the adapter name of the format `{module_name}:{adapter_name}`.\n",
"\n",
"**Note**: After the module adapter is added, it can be referred to simply by the `adapter_name` part of its name. There is no need to provide `module_name` again since it is guaranteed that all adapter names are globally unique at the Model level."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "W47wBr-eB6IR"
},
"source": [
"-----\n",
"\n",
"It is entirely up to the user whether they should support just `Global Adapters`, `Module Adapters` or both. For the purpose of this tutorial, we will support both, and also add support for a `Default Module Adapter` for the `encoder`.\n",
"\n",
"**Note**: In order to easily distinguish between a `Global` and `Module` adapter, use the convenient method `resolve_adapter_module_name_(name)`. We encourage use of the property `adapter_module_names` to determine the valid adapter modules that can be used."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "yCFZt7GCCQ1K"
},
"outputs": [],
"source": [
"class SimpleModelAdapterAddAdapter(SimpleModelAdapterSetupAdapters):\n",
"\n",
" def add_adapter(self, name: str, cfg: DictConfig):\n",
" # Setup the config first. At the model level, super does not automatically call any of the subclass methods\n",
" # It just sets up the model.cfg for users\n",
" super().add_adapter(name, cfg)\n",
"\n",
" # Resolve module name and adapter name\n",
" module_name, adapter_name = self.resolve_adapter_module_name_(name)\n",
"\n",
" # Try to retrieve global adapter config\n",
" global_config = self._get_global_cfg()\n",
"\n",
" # forward the method call to the individual modules\n",
" # If module name is empty, it is a default and global adapter, otherwise it is a module adapter\n",
" if (module_name == '' and global_config.get('encoder_adapter', True)) or (module_name == 'encoder'):\n",
" self.encoder.add_adapter(name, cfg)\n",
"\n",
" if (module_name == '' and global_config.get('decoder_adapter', False)) or (module_name == 'decoder'):\n",
" self.decoder.add_adapter(name, cfg)\n",
" \n",
" def resolve_adapter_module_name_(self, name: str) -> (str, str):\n",
" # resolve name and module\n",
" module_name, adapter_name = super().resolve_adapter_module_name_(name)\n",
"\n",
" # '' as module name means \"default module\"\n",
" # assert that the module name (if provided) is valid - default, encoder or decoder\n",
" valid_module_names = self.adapter_module_names # Get the list of supported adapter modules from property\n",
" if module_name not in valid_module_names:\n",
" raise ValueError(f\"Provided module name `{module_name}` is not in valid list : {valid_module_names}\")\n",
"\n",
" return (module_name, adapter_name)\n",
"\n",
" def _get_global_cfg(self):\n",
" # Utility method to get a default \"global\" adapter config (can be given any value by the user in this config)\n",
" global_config = DictConfig({})\n",
" if 'adapters' in self.cfg and self.adapter_global_cfg_key in self.cfg.adapters:\n",
" global_config = self.adapter_cfg[self.adapter_global_cfg_key]\n",
" return global_config\n",
"\n",
" @property\n",
" def adapter_module_names(self) -> List[str]:\n",
" module_names = super().adapter_module_names # \"Default\" adapter module: ''\n",
" module_names.extend(['encoder', 'decoder']) # Add support for `encoder` and `decoder` modules\n",
" return module_names\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "HHAZFqo7DrCV"
},
"source": [
"-----\n",
"\n",
"Since that was a lot of code, let's break it down. First we define the utility method `_get_global_cfg()` that tries to get the \"model.cfg.adapters.global_cfg\" sub-config from the model config. This config is user-defined and can be used by the user to configure any logic as necessary. If it is not found, a default dict is created instead.\n",
"\n",
"Next, we override the `resolve_adapter_module_name_(name)` method. This method in the base class takes a string name and tries to split it into `module_name` and `adapter_name`. We override this method to assert some valid `module_name's.\n",
"\n",
"-----\n",
"\n",
"Finally, we override `add_adapter` - first, we call super() to update the config. Next, we call our overridden `resolve_adapter_module_name_(name)` to check if the provided adapter name is valid or not. Then we gather the Adapter `global_cfg` if it exists in the model config.\n",
"\n",
"With all this information, we are now ready to add adapters as needed. We have some \"user-defined\" logic, such that we add an encoder adapter if either. \n",
"- The user provides a \"Global\" adapter with a default module name, OR has set the value of `global_cfg.encoder_adapter` to True (True by default). This means that at least the encoder adapter will always be added by default.\n",
"- The user provides a `Module` adapter with the `decoder` module name, OR has set the `global_cfg.decoder_adapter` flag to True explicitly (False by default)."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "4fVSt9wPFK7U"
},
"source": [
"## Overriding get_enabled_adapters()\n",
"\n",
"Next, we will override the `get_enabled_adapters()` method. This is often simple enough, where we need only to check if the Model components support adapters or not, and then if they do, gather and collate the results of those nodules."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "RuwE_mLXAko6"
},
"outputs": [],
"source": [
"class SimpleModelAdapterGetEnabledAdapters(SimpleModelAdapterAddAdapter):\n",
"\n",
" def get_enabled_adapters(self) -> List[str]:\n",
" enabled_adapters = super().get_enabled_adapters()\n",
"\n",
" # Forward the method call to the individual modules\n",
" if isinstance(self.encoder, AdapterModuleMixin):\n",
" encoder_adapters = self.encoder.get_enabled_adapters()\n",
" enabled_adapters.extend(encoder_adapters)\n",
"\n",
" if isinstance(self.decoder, AdapterModuleMixin):\n",
" decoder_adapters = self.decoder.get_enabled_adapters()\n",
" enabled_adapters.extend(decoder_adapters)\n",
"\n",
" return enabled_adapters"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "O0fgtkVqFvFS"
},
"source": [
"## Overriding set_enabled_adapters()\n",
"\n",
"Similar to the above, we only need to check if the components support adapters or not and then dispatch the call to those components if they are supported.\n",
"\n",
"**Note**: We will perform a logic check here instead of the usual inheritance check. An inheritance check alone does not mean the component has added an adapter or not - remember, we have two use cases of `default/global/module encoder` and `module decoder` adapters. So we need to check for those conditions.\n",
"\n",
"**Note 2**: As you may remember, set_enabled_adapters() does take the value `None` for the name to set the state of all adapters. However, `resolve_adapter_module_name(name)_` must always accept a valid string name. So care must be taken not to pass `None` to that method."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "nuuzuedEFt4Y"
},
"outputs": [],
"source": [
"class SimpleModelAdapterSetEnabledAdapters(SimpleModelAdapterGetEnabledAdapters):\n",
"\n",
" def set_enabled_adapters(self, name: Optional[str] = None, enabled: bool = True):\n",
" # check if valid model with some adapter support\n",
" super().set_enabled_adapters(name, enabled)\n",
"\n",
" # Resolve module name and adapter name\n",
" if name is not None:\n",
" module_name, _ = self.resolve_adapter_module_name_(name)\n",
" else:\n",
" module_name = None\n",
"\n",
" # Try to retrieve global adapter config\n",
" global_config = self._get_global_cfg()\n",
"\n",
" # Forward the method call to the individual modules\n",
" # Note the OR checks - \n",
" # if module_name is None - ie explicitly None was passed, set the state for all modules\n",
" # if module name was '' or 'encoder, or if `global_cfg.encoder_adapter` was true, or module_name was '' or 'encoder', forward to encoder.\n",
" # if `global_cfg.decoder_adapter` was true, or module_name was 'decoder', forward to decoder.\n",
" # The user can chose to simplify this logic, or add more complex logic as required.\n",
" if name is None or global_config.get('encoder_adapter', True) or module_name in ('', 'encoder'):\n",
" if self.encoder.is_adapter_available():\n",
" self.encoder.set_enabled_adapters(name, enabled)\n",
"\n",
" if name is None or global_config.get('decoder_adapter', False) or module_name == 'decoder':\n",
" if self.decoder.is_adapter_available():\n",
" self.decoder.set_enabled_adapters(name, enabled)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "wPf5ga4YH0lb"
},
"source": [
"## Overriding `check_valid_model_with_adapter_support_()`\n",
"\n",
"In the above implementation, we implicitly check that the components of the model support adapters or not and carry forward. This is fine, but we may want to perform more strict checks so as to give meaningful warnings or errors about invalid combinations of actions. \n",
"\n",
"For this purpose, we provide `check_valid_model_with_adapter_support()_`. This method is called before nearly all adapter operations, and attempts to assert some truths. Users can raise any error or warning here to notify the user about invalid operations / configurations."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "l4vM2u3FHvaN"
},
"outputs": [],
"source": [
"from nemo.utils import logging, logging_mode\n",
"\n",
"class SimpleModelAdapterFinal(SimpleModelAdapterSetEnabledAdapters):\n",
"\n",
" def check_valid_model_with_adapter_support_(self):\n",
" global_cfg = DictConfig({})\n",
" if self.adapter_global_cfg_key in self.adapter_cfg:\n",
" global_cfg = self.adapter_cfg[self.adapter_global_cfg_key]\n",
"\n",
" encoder_adapter = global_cfg.get('encoder_adapter', True)\n",
" decoder_adapter = global_cfg.get('decoder_adapter', False)\n",
"\n",
" if encoder_adapter and not hasattr(self, 'encoder'):\n",
" logging.warning(\"Encoder not available\", mode=logging_mode.ONCE)\n",
" elif encoder_adapter and not isinstance(self.encoder, AdapterModuleMixin):\n",
" logging.warning(\"Encoder does not support adapters !\", mode=logging_mode.ONCE)\n",
"\n",
" if decoder_adapter and not hasattr(self, 'decoder'):\n",
" logging.warning(\"Decoder is not available\", mode=logging_mode.ONCE)\n",
" elif decoder_adapter and not isinstance(self.decoder, AdapterModuleMixin):\n",
" logging.warning(\"Decoder does not support adapters !\", mode=logging_mode.ONCE)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eTVGaXpqIzWH"
},
"source": [
"## Updating the Model\n",
"\n",
"After the top-level Model mixin class has been implemented separately, we can easily attach it to our original Model. For the tutorial's sake, we will duplicate the code here, but know that you can also subclass the Model and override its `__init__` method for similar functionality."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Tl4aJr9zIx_v"
},
"outputs": [],
"source": [
"# Note how we added `SimpleModelAdapterFinal` to the class inheritance scheme.\n",
"# The only other change is the addition of `self.setup_adapters()` to the __init__ method.\n",
"class SimpleModel(ModelPT, SimpleModelAdapterFinal):\n",
" def __init__(self, cfg, trainer=None):\n",
" super().__init__(cfg, trainer=trainer)\n",
"\n",
" self.encoder = instantiate(cfg.encoder) # type: ResidualMLP\n",
" self.decoder = instantiate(cfg.decoder) # type: ResidualMLP\n",
" self.projection = nn.Linear(self.decoder.dim, cfg.out_features)\n",
"\n",
" # NOTE: The only important change - calling `setup_adapters()` !\n",
" self.setup_adapters()\n",
"\n",
" def forward(self, x):\n",
" y = self.encoder(x)\n",
" z = self.decoder(y)\n",
" out = self.projection(z)\n",
" return out\n",
"\n",
" def list_available_models(cls):\n",
" return []\n",
"\n",
" def setup_training_data(self, train_data_config):\n",
" pass\n",
"\n",
" def setup_validation_data(self, val_data_config):\n",
" pass"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "9HqU-8pBJjlP"
},
"source": [
"-----\n",
"\n",
"And there we go ! Just subclassing the new mixin, as well as calling `setup_adapters()` is the only modification necessary !"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "tFlt2sCPJgvU"
},
"outputs": [],
"source": [
"old_config = get_model_config(dim)\n",
"model = SimpleModel(old_config)\n",
"model.summarize()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6LioRW_TJ6Qs"
},
"source": [
"-----\n",
"\n",
"Now, let us try adding a `decoder` Module adapter to this Model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "9W5B_0wiJ0V5"
},
"outputs": [],
"source": [
"# This cell will error out if uncommented\n",
"# model.add_adapter(\"decoder:adapter_1\", cfg=adapter_modules.LinearAdapterConfig(in_features=dim, dim=5))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "gW71Jhq_KhD7"
},
"source": [
"-----\n",
"\n",
"It fails with an error `Encoder does not support adapters !`. This is because, if you recall, the original config of this model (old_config) has the classpath to the `ResidualMLP` class, but not the `ResidualMLPAdapter` class!\n",
"\n",
"This can be easily rectified because we have already registered this class properly (refer to `Register the new adapter` sub-section)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "oyvHTCjpKgKi"
},
"outputs": [],
"source": [
"def get_adapter_model_config() -> DictConfig:\n",
" config = get_model_config()\n",
"\n",
" # Find the metadata in the registry, and get the correct adapter capable class path\n",
" enc_adapter_metadata = adapter_mixins.get_registered_adapter(config.encoder._target_)\n",
" if enc_adapter_metadata is not None:\n",
" print(\"Updated encoder to support adapters !\")\n",
" config.encoder._target_ = enc_adapter_metadata.adapter_class_path\n",
"\n",
" # Find the metadata in the registry, and get the correct adapter capable class path\n",
" dec_adapter_metadata = adapter_mixins.get_registered_adapter(config.decoder._target_)\n",
" if dec_adapter_metadata is not None:\n",
" print(\"Updated decoder to support adapters !\")\n",
" config.decoder._target_ = dec_adapter_metadata.adapter_class_path\n",
"\n",
" return config"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "K5HD91NwKMTp"
},
"outputs": [],
"source": [
"new_config = get_adapter_model_config()\n",
"model = SimpleModel(new_config)\n",
"model.summarize()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "YvnZW4Y8LnEH"
},
"source": [
"-----\n",
"Now let us again try to add a `decoder` Module Adapter -"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "TCYE7afTLcYY"
},
"outputs": [],
"source": [
"model.add_adapter('decoder:adapter_1', cfg=adapter_modules.LinearAdapterConfig(in_features=dim, dim=5))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Y4enwIFsL3BE"
},
"source": [
"-----\n",
"You will see multiple log messages stating `adapter_1` was added (one for each block). Now lets check if the adapter is in the correct module - "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "lXBD5l1PL0zm"
},
"outputs": [],
"source": [
"print(\"Encoder adapter available :\", model.encoder.is_adapter_available())\n",
"print(\"Decoder adapter available :\", model.decoder.is_adapter_available())\n",
"print(\"Decoder adapter(s) :\", model.decoder.get_enabled_adapters())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "iKRWH0ZSMBpR"
},
"outputs": [],
"source": [
"model.summarize()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "sw8ZXBBYMnVH"
},
"source": [
"## Preparing to train an adapter\n",
"\n",
"Finally, now that our model has adapter capabilities, we can train just the adapter while freezing the rest of the model.\n",
"\n",
"In the following section, we show how to perform this setup."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "fyNB7Jh0Mp2q"
},
"outputs": [],
"source": [
"# disable all adapters, enable just one adapter that we want to train\n",
"model.set_enabled_adapters(enabled=False)\n",
"model.set_enabled_adapters('adapter_1', enabled=True) # note : we directly use the adapter_name of adapter_1\n",
"\n",
"# freeze all the weights, unfreeze just the enabled adapters\n",
"model.freeze()\n",
"model.unfreeze_enabled_adapters()\n",
"\n",
"print()\n",
"model.summarize()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "u1aA0GxI_kKc"
},
"source": [
"## Save and Restore Adapters\n",
"\n",
"Now that we have implemented this Model, we can always use `model.save_to()` to save a NeMo model with full adapter support. Let us try to save and then restore this adapter model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "AH_v_InH_xhO"
},
"outputs": [],
"source": [
"model.save_to('full_model.nemo')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "LH0FNfVHAs4u"
},
"outputs": [],
"source": [
"!ls -d -- *.nemo"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "0Z_kajXeBDyI"
},
"outputs": [],
"source": [
"new_model = ModelPT.restore_from('full_model.nemo')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "XvTufIQWBNgi"
},
"outputs": [],
"source": [
"new_model.decoder.get_enabled_adapters()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "9OzpPgfxBda1"
},
"source": [
"-----\n",
"\n",
"While we can save and restore the entire model, we don't need to. Think about adapters for a moment - they are additional modules on top of a base model. For every new adapter we add, it would not be feasible to save and restore the entire model to file (especially if the models are multiple billions of parameters !).\n",
"\n",
"Next, we discuss how to save and restore just the modules themselves into separate .pt files using `save_adapters()`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Jbf23dgFB8NU"
},
"outputs": [],
"source": [
"model.save_adapters('adapters.pt', name=None)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "n-dkPsxNCEGv"
},
"outputs": [],
"source": [
"!du -sh adapters.pt full_model.nemo"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "wJc-dA7aCH5I"
},
"source": [
"-----\n",
"As you can see, the whole model is much larger than just the adapter modules themselves. This can be used to share just the adapter modules with others without using ample disk space for the entire model.\n",
"\n",
"Next, we show how to restore such adapter checkpoint to a new model using `load_adapters()`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "3w2ob6_ECgxf"
},
"outputs": [],
"source": [
"new_config = get_adapter_model_config()\n",
"model_2 = SimpleModel(new_config)\n",
"model_2.summarize() # no adapters in basic model with adapter support"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ZmceRIylCnry"
},
"outputs": [],
"source": [
"model_2.load_adapters('adapters.pt', name=None, map_location='cpu')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "2qEjDjcLEfC2"
},
"outputs": [],
"source": [
"model_2.freeze()\n",
"model_2.unfreeze_enabled_adapters()\n",
"model_2.summarize()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "a80Pt-_5E_kN"
},
"outputs": [],
"source": [
"model_2.get_enabled_adapters()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "lzk6hXGuEdqm"
},
"source": [
"-----\n",
"You will note that we passed None to the above model, restoring all the adapters, but what if we want to restore just one adapter from the checkpoint? Then we can pass the `name` argument to the `load_adapters()` method. \n",
"\n",
"Remember: The name passed here must be the name used to create the adapter itself, so for module-level adapters, the `module_name` must also be provided."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Qg48swJpMiS5"
},
"source": [
"# Further reading\n",
"\n",
"For further information about Adapters, please refer to the NeMo Documentation page for Adapters. It also includes sections that detail how to create your Adapter modules.\n",
"\n",
"For further details regarding how adapters can be used for, please refer to the following articles - \n",
"- [Parameter-Efficient Transfer Learning for NLP](https://arxiv.org/abs/1902.00751)\n",
"- [Exploiting Adapters for Cross-lingual Low-resource Speech Recognition](https://arxiv.org/abs/2105.11905)\n",
"- [Efficient Adapter Transfer of Self-Supervised Speech Models for Automatic Speech Recognition](https://arxiv.org/abs/2202.03218)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "iz2wF3cd-6MF"
},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"collapsed_sections": [
"8eH6mW792lkY"
],
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
} |