File size: 17,745 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import subprocess
import tempfile
from pathlib import Path
from typing import Tuple
from omegaconf import DictConfig, OmegaConf, open_dict
from nemo.collections.asr.metrics.wer import word_error_rate_detail
from nemo.utils import logging
def run_asr_inference(cfg: DictConfig) -> DictConfig:
"""
Execute ASR inference based on input mode and parameters.
"""
if (cfg.model_path and cfg.pretrained_name) or (not cfg.model_path and not cfg.pretrained_name):
raise ValueError("Please specify either cfg.model_path or cfg.pretrained_name!")
if cfg.inference.mode == "offline":
cfg = run_offline_inference(cfg)
elif cfg.inference.mode == "chunked":
if (
"total_buffer_in_secs" not in cfg.inference
or "chunk_len_in_secs" not in cfg.inference
or not cfg.inference.total_buffer_in_secs
or not cfg.inference.chunk_len_in_secs
):
raise ValueError(f"Please specify both total_buffer_in_secs and chunk_len_in_secs for chunked inference")
cfg = run_chunked_inference(cfg)
elif cfg.inference.mode == "offline_by_chunked":
# When use Conformer to transcribe long audio sample, we could probably encounter CUDA out of memory issue.
# Here we use offline_by_chunked mode to simulate offline mode for Conformer.
# And we specify default total_buffer_in_secs=22 and chunk_len_in_secs=20 to avoid above problem.
OmegaConf.set_struct(cfg, True)
if 'total_buffer_in_secs' not in cfg.inference or not cfg.inference.total_buffer_in_secs:
with open_dict(cfg):
cfg.inference.total_buffer_in_secs = 22
logging.info(
f"Does not provide total_buffer_in_secs required by {cfg.inference.mode} mode. Using default value {cfg.inference.total_buffer_in_secs}"
)
if 'chunk_len_in_secs' not in cfg.inference or not cfg.inference.chunk_len_in_secs:
with open_dict(cfg):
cfg.inference.chunk_len_in_secs = 20
logging.info(
f"Does not provide total_buffer_in_secs required by {cfg.inference.mode} mode. Using default value {cfg.inference.chunk_len_in_secs}"
)
cfg = run_chunked_inference(cfg)
else:
raise ValueError(f"inference could only be offline or chunked, but got {cfg.inference.mode}")
return cfg
def run_chunked_inference(cfg: DictConfig) -> DictConfig:
if "output_filename" not in cfg or not cfg.output_filename:
if cfg.model_path:
model_name = Path(cfg.model_path).stem
else:
model_name = cfg.pretrained_name
dataset_name = Path(cfg.test_ds.manifest_filepath).stem
mode_name = (
cfg.inference.mode
+ "B"
+ str(cfg.inference.total_buffer_in_secs)
+ "C"
+ str(cfg.inference.chunk_len_in_secs)
)
OmegaConf.set_struct(cfg, True)
with open_dict(cfg):
cfg.output_filename = model_name + "-" + dataset_name + "-" + mode_name + ".json"
script_path = (
Path(__file__).parents[2]
/ "examples"
/ "asr"
/ "asr_chunked_inference"
/ "ctc"
/ "speech_to_text_buffered_infer_ctc.py"
)
if (cfg.pretrained_name and 'transducer' in cfg.pretrained_name) or (
cfg.model_path and 'transducer' in cfg.model_path
):
script_path = (
Path(__file__).parents[2]
/ "examples"
/ "asr"
/ "asr_chunked_inference"
/ "rnnt"
/ "speech_to_text_buffered_infer_rnnt.py"
)
subprocess.run(
f"python {script_path} "
f"model_path={cfg.model_path} "
f"pretrained_name={cfg.pretrained_name} "
f"dataset_manifest={cfg.test_ds.manifest_filepath} "
f"output_filename={cfg.output_filename} "
f"random_seed={cfg.random_seed} "
f"batch_size={cfg.test_ds.batch_size} "
f"chunk_len_in_secs={cfg.inference.chunk_len_in_secs} "
f"total_buffer_in_secs={cfg.inference.total_buffer_in_secs} "
f"model_stride={cfg.inference.model_stride} ",
shell=True,
check=True,
)
return cfg
def run_offline_inference(cfg: DictConfig) -> DictConfig:
if "output_filename" not in cfg or not cfg.output_filename:
if cfg.model_path:
model_name = Path(cfg.model_path).stem
else:
model_name = cfg.pretrained_name
dataset_name = Path(cfg.test_ds.manifest_filepath).stem
mode_name = cfg.inference.mode
OmegaConf.set_struct(cfg, True)
with open_dict(cfg):
cfg.output_filename = model_name + "-" + dataset_name + "-" + mode_name + ".json"
with tempfile.NamedTemporaryFile(mode='w', encoding='utf-8') as f:
OmegaConf.save(cfg, f)
f.seek(0) # reset file pointer
script_path = Path(__file__).parents[2] / "examples" / "asr" / "transcribe_speech.py"
# If need to move other config such as decoding strategy, could either:
# 1) change TranscriptionConfig on top of the executed scripts such as transcribe_speech.py in examples/asr, or
# 2) add command as "rnnt_decoding.strategy=greedy_batch " to below script
subprocess.run(
f"python {script_path} "
f"model_path={cfg.model_path} "
f"pretrained_name={cfg.pretrained_name} "
f"dataset_manifest={cfg.test_ds.manifest_filepath} "
f"output_filename={cfg.output_filename} "
f"batch_size={cfg.test_ds.batch_size} "
f"random_seed={cfg.random_seed} "
f"eval_config_yaml={f.name} ",
shell=True,
check=True,
)
return cfg
def clean_label(_str: str, num_to_words: bool = True, langid="en") -> str:
"""
Remove unauthorized characters in a string, lower it and remove unneeded spaces
"""
replace_with_space = [char for char in '/?*\",.:=?_{|}~¨«·»¡¿„…‧‹›≪≫!:;ː→']
replace_with_blank = [char for char in '`¨´‘’“”`ʻ‘’“"‘”']
replace_with_apos = [char for char in '‘’ʻ‘’‘']
_str = _str.strip()
_str = _str.lower()
for i in replace_with_blank:
_str = _str.replace(i, "")
for i in replace_with_space:
_str = _str.replace(i, " ")
for i in replace_with_apos:
_str = _str.replace(i, "'")
if num_to_words:
if langid == "en":
_str = convert_num_to_words(_str, langid="en")
else:
logging.info(
"Currently support basic num_to_words in English only. Please use Text Normalization to convert other languages! Skipping!"
)
ret = " ".join(_str.split())
return ret
def convert_num_to_words(_str: str, langid: str = "en") -> str:
"""
Convert digits to corresponding words. Note this is a naive approach and could be replaced with text normalization.
"""
if langid == "en":
num_to_words = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
_str = _str.strip()
words = _str.split()
out_str = ""
num_word = []
for word in words:
if word.isdigit():
num = int(word)
while num:
digit = num % 10
digit_word = num_to_words[digit]
num_word.append(digit_word)
num = int(num / 10)
if not (num):
num_str = ""
num_word = num_word[::-1]
for ele in num_word:
num_str += ele + " "
out_str += num_str + " "
num_word.clear()
else:
out_str += word + " "
out_str = out_str.strip()
else:
raise ValueError(
"Currently support basic num_to_words in English only. Please use Text Normalization to convert other languages!"
)
return out_str
def cal_write_wer(cfg: DictConfig, pred_text_attr_name: str = None) -> Tuple[DictConfig, dict]:
"""
Calculate wer, inserion, deletion and substitution rate based on groundtruth text and pred_text_attr_name (pred_text)
We use WER in function name as a convention, but it currently Error Rate (ER) support Word Error Rate (WER) and Character Error Rate (CER)
"""
samples = []
hyps = []
refs = []
with open(cfg.engine.output_filename, 'r') as fp:
for line in fp:
sample = json.loads(line)
if 'text' not in sample:
raise ValueError(
"ground-truth text does not present in manifest! Cannot calculate Word Error Rate. Exiting!"
)
if not pred_text_attr_name:
pred_text_attr_name = "pred_text"
hyp = sample[pred_text_attr_name]
ref = sample['text']
if cfg.analyst.metric_calculator.clean_groundtruth_text:
ref = clean_label(ref, langid=cfg.analyst.metric_calculator.langid)
wer, tokens, ins_rate, del_rate, sub_rate = word_error_rate_detail(
hypotheses=[hyp], references=[ref], use_cer=cfg.analyst.metric_calculator.use_cer
)
eval_metric = "wer"
if cfg.analyst.metric_calculator.use_cer:
eval_metric = "cer"
sample[eval_metric] = wer # evaluatin metric, could be word error rate of character error rate
sample['tokens'] = tokens # number of word/characters/tokens
sample['ins_rate'] = ins_rate # insertion error rate
sample['del_rate'] = del_rate # deletion error rate
sample['sub_rate'] = sub_rate # substitution error rate
samples.append(sample)
hyps.append(hyp)
refs.append(ref)
total_wer, total_tokens, total_ins_rate, total_del_rate, total_sub_rate = word_error_rate_detail(
hypotheses=hyps, references=refs, use_cer=cfg.analyst.metric_calculator.use_cer
)
if "output_filename" not in cfg.analyst.metric_calculator or not cfg.analyst.metric_calculator.output_filename:
# overwrite the current generated manifest
OmegaConf.set_struct(cfg, True)
with open_dict(cfg):
cfg.analyst.metric_calculator.output_filename = cfg.engine.output_filename
with open(cfg.analyst.metric_calculator.output_filename, 'w') as fout:
for sample in samples:
json.dump(sample, fout)
fout.write('\n')
fout.flush()
total_res = {
"samples": len(samples),
"tokens": total_tokens,
eval_metric: total_wer,
"ins_rate": total_ins_rate,
"del_rate": total_del_rate,
"sub_rate": total_sub_rate,
}
return cfg, total_res, eval_metric
def cal_target_metadata_wer(manifest: str, target: str, meta_cfg: DictConfig, eval_metric: str = "wer",) -> dict:
"""
Caculating number of samples (samples), number of words/characters/tokens (tokens),
wer/cer, insertion error rate (ins_rate), deletion error rate (del_rate), substitution error rate (sub_rate) of the group/slot of target metadata.
The group could be [female, male] or slot group like [0-2s, 2-5s, >5s audios]
Args:
manifest (str): Filepath of the generated manifest which contains prediction and eval result for each samples.
target (str): Target metadata. Execute the target metadata if field presents in manifest.
such as 'duration', 'speaker', 'emotion', etc.
meta_cfg (DictConfig): Config for calculating group eval_metric for the target metadata.
eval_metric: (str): Supported evaluation metrics. Currently support 'wer' and 'cer'.
Return:
ret (dict): Generated dictionary containing all results regarding the target metadata.
"""
if eval_metric not in ['wer', 'cer']:
raise ValueError(
"Currently support wer and cer as eval_metric. Please implement it in cal_target_metadata_wer if using different eval_metric"
)
wer_per_class = {}
with open(manifest, 'r') as fp:
for line in fp:
sample = json.loads(line)
if target in sample:
target_class = sample[target]
if target_class not in wer_per_class:
wer_per_class[target_class] = {
'samples': 0,
'tokens': 0,
"errors": 0,
"inss": 0,
"dels": 0,
"subs": 0,
}
wer_per_class[target_class]['samples'] += 1
tokens = sample["tokens"]
wer_per_class[target_class]["tokens"] += tokens
wer_per_class[target_class]["errors"] += tokens * sample[eval_metric]
wer_per_class[target_class]["inss"] += tokens * sample["ins_rate"]
wer_per_class[target_class]["dels"] += tokens * sample["del_rate"]
wer_per_class[target_class]["subs"] += tokens * sample["sub_rate"]
if len(wer_per_class) > 0:
res_wer_per_class = {}
for target_class in wer_per_class:
res_wer_per_class[target_class] = {}
res_wer_per_class[target_class]["samples"] = wer_per_class[target_class]["samples"]
res_wer_per_class[target_class][eval_metric] = (
wer_per_class[target_class]["errors"] / wer_per_class[target_class]["tokens"]
)
res_wer_per_class[target_class]["tokens"] = wer_per_class[target_class]["tokens"]
res_wer_per_class[target_class]["ins_rate"] = (
wer_per_class[target_class]["inss"] / wer_per_class[target_class]["tokens"]
)
res_wer_per_class[target_class]["del_rate"] = (
wer_per_class[target_class]["dels"] / wer_per_class[target_class]["tokens"]
)
res_wer_per_class[target_class]["sub_rate"] = (
wer_per_class[target_class]["subs"] / wer_per_class[target_class]["tokens"]
)
else:
logging.info(f"metadata '{target}' does not present in manifest. Skipping! ")
return None
values = ['samples', 'tokens', 'errors', 'inss', 'dels', 'subs']
slot_wer = {}
if 'slot' in meta_cfg and meta_cfg.slot:
for target_class in wer_per_class:
for s in meta_cfg.slot:
if isinstance(s[0], float) or isinstance(s[0], int):
if s[0] <= target_class < s[1]:
slot_key = "slot-" + ",".join(str(i) for i in s)
if slot_key not in slot_wer:
slot_wer[slot_key] = {
'samples': 0,
'tokens': 0,
"errors": 0,
"inss": 0,
"dels": 0,
"subs": 0,
}
for v in values:
slot_wer[slot_key][v] += wer_per_class[target_class][v]
break
elif isinstance(s[0], str):
if target_class in s:
slot_key = "slot-" + ",".join(s)
if slot_key not in slot_wer:
slot_wer[slot_key] = {
'samples': 0,
'tokens': 0,
"errors": 0,
"inss": 0,
"dels": 0,
"subs": 0,
}
for v in values:
slot_wer[slot_key][v] += wer_per_class[target_class][v]
break
else:
raise ValueError("Current only support target metadata belongs to numeric or string ")
for slot_key in slot_wer:
slot_wer[slot_key][eval_metric] = slot_wer[slot_key]['errors'] / slot_wer[slot_key]['tokens']
slot_wer[slot_key]['ins_rate'] = slot_wer[slot_key]['inss'] / slot_wer[slot_key]['tokens']
slot_wer[slot_key]['del_rate'] = slot_wer[slot_key]['dels'] / slot_wer[slot_key]['tokens']
slot_wer[slot_key]['sub_rate'] = slot_wer[slot_key]['subs'] / slot_wer[slot_key]['tokens']
slot_wer[slot_key].pop('errors')
slot_wer[slot_key].pop('inss')
slot_wer[slot_key].pop('dels')
slot_wer[slot_key].pop('subs')
res_wer_per_class.update(slot_wer)
ret = None
if meta_cfg.save_wer_per_class:
ret = res_wer_per_class
if (not meta_cfg.save_wer_per_class) and ('slot' in meta_cfg and meta_cfg.slot):
ret = slot_wer
return ret
|